retroc2/model.ipynb
2022-05-17 13:03:26 +02:00

2.8 KiB

import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

with open('train/train.tsv', 'r', encoding='utf8') as file:
    train_data = pd.read_csv(file, sep='\t', names=['Begin', 'End', 'Title', 'Publisher', 'Text'])

    
X = train_data['Text']
Y = train_data['Begin']


model = make_pipeline(TfidfVectorizer(), LinearRegression())
model.fit(X, Y)
Pipeline(steps=[('tfidfvectorizer', TfidfVectorizer()),
                ('linearregression', LinearRegression())])
def readFile(filename):
    result = []
    with open(filename, 'r', encoding="utf-8") as file:
        for line in file:
            text = line.split("\t")[0].strip()
            result.append(text)
    return result

def write_pred(filename, predictions):
    with open(filename, "w") as file:
        for pred in predictions:
            file.write(str(pred) + "\n")
        

dev_0 = readFile('dev-0/in.tsv')
predict_dev_0 = model.predict(dev_0)
write_pred('dev-0/out.tsv', predict_dev_0)

dev_1 = readFile('dev-1/in.tsv')
predict_dev_1 = model.predict(dev_1)
write_pred('dev-1/out.tsv', predict_dev_1)

test_A = readFile('test-A/in.tsv')
predict_test_A = model.predict(test_A)
write_pred('test-A/out.tsv', predict_test_A)