update
This commit is contained in:
commit
41380fbfcf
@ -1,7 +1,7 @@
|
|||||||
{
|
{
|
||||||
"name": "react_bs_web",
|
"name": "react_bs_web",
|
||||||
"private": true,
|
"private": true,
|
||||||
"proxy": "http://localhost:5173",
|
"proxy": "http://127.0.0.1:5000/",
|
||||||
"version": "0.0.0",
|
"version": "0.0.0",
|
||||||
"type": "module",
|
"type": "module",
|
||||||
"scripts": {
|
"scripts": {
|
||||||
|
@ -10,7 +10,7 @@ const Hero = () => {
|
|||||||
const toggleDropdown = () => setIsOpen(!isOpen);
|
const toggleDropdown = () => setIsOpen(!isOpen);
|
||||||
const handleMinuteChange = (e) => setGameMinute(e.target.value);
|
const handleMinuteChange = (e) => setGameMinute(e.target.value);
|
||||||
|
|
||||||
const [data,setData] = useState([{}])
|
const [data, setData] = useState("");
|
||||||
//zmienne globalne
|
//zmienne globalne
|
||||||
//zmienna mówiąca który przycisk jest aktywny, jest ona wykorzystywana
|
//zmienna mówiąca który przycisk jest aktywny, jest ona wykorzystywana
|
||||||
//przez listener nanoszący zawodników na boisko. 1 - strzelec , 2 - bramkarz , 3 - obronca, 4 - napasnik. zmienna przez aktywacje przycskówk bb1, bb2, bb3 i bb4
|
//przez listener nanoszący zawodników na boisko. 1 - strzelec , 2 - bramkarz , 3 - obronca, 4 - napasnik. zmienna przez aktywacje przycskówk bb1, bb2, bb3 i bb4
|
||||||
@ -108,10 +108,10 @@ const Hero = () => {
|
|||||||
var pName = "Bramkarz"
|
var pName = "Bramkarz"
|
||||||
var pColor = "#03e7fc"
|
var pColor = "#03e7fc"
|
||||||
}else if(possition == 2){
|
}else if(possition == 2){
|
||||||
var pName = "Napastnik"
|
var pName = "Obrońca"
|
||||||
var pColor = "#0324fc"
|
var pColor = "#0324fc"
|
||||||
}else if (possition ==3){
|
}else if (possition ==3){
|
||||||
var pName = "Obrońca"
|
var pName = "Napastnik"
|
||||||
var pColor = "#fc6703"
|
var pColor = "#fc6703"
|
||||||
}
|
}
|
||||||
var player = document.createElement('div');
|
var player = document.createElement('div');
|
||||||
@ -189,6 +189,8 @@ const Hero = () => {
|
|||||||
ball.style.left = x + "%"
|
ball.style.left = x + "%"
|
||||||
ball.style.top = y + "%"
|
ball.style.top = y + "%"
|
||||||
}
|
}
|
||||||
|
//var shooterX = konwerturX(ball.style.left)
|
||||||
|
//var shooterY = konwetujY(ball.style.top)
|
||||||
posytion.innerHTML = "x:" + konwerturX(ball.style.left) + "m " + "y:" + konwetujY(ball.style.top) + "m";
|
posytion.innerHTML = "x:" + konwerturX(ball.style.left) + "m " + "y:" + konwetujY(ball.style.top) + "m";
|
||||||
bojo.addEventListener("mouseup", function(){
|
bojo.addEventListener("mouseup", function(){
|
||||||
ball.style.background = pColor
|
ball.style.background = pColor
|
||||||
@ -200,22 +202,38 @@ const Hero = () => {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// // Wyłanie zapytania do serwera
|
||||||
|
|
||||||
// Wyłanie zapytania do serwera
|
|
||||||
function sentQuestion() {
|
function sentQuestion() {
|
||||||
if (numer_od_shooters > 0) {
|
var ball = document.querySelector('.football');
|
||||||
fetch("http://localhost:5173/members").then
|
|
||||||
(res => res.json()).then(res => {
|
if (ball) {
|
||||||
let token = res.token;
|
// Użyj backticksów zamiast zwykłych cudzysłowów
|
||||||
console.log("token: ", token);
|
//console.log('Wysyłanie wartości: ', ball);
|
||||||
})
|
shooterX = konwerturX(ball.style.left)
|
||||||
eX = data.response
|
shooterY = konwetujY(ball.style.top)
|
||||||
} else {
|
console.log('Wysyłanie wartości: ', shooterX, shooterY);
|
||||||
alert('Piłka nie jest obecnie na boisku.');
|
fetch(`http://127.0.0.1:5000/get_model?x=${shooterX}&y=${shooterY}`).then(
|
||||||
}
|
res => res.json()
|
||||||
|
).then(
|
||||||
|
data => {
|
||||||
|
setData(data);
|
||||||
|
console.log(data);
|
||||||
|
// Przenieś tę linię do środka bloku .then(), aby uniknąć błędów
|
||||||
|
let eX = data.response;
|
||||||
|
document.getElementById("ex").innerHTML = "Współczynnik xG: " + eX;
|
||||||
|
}
|
||||||
|
).catch(error => {
|
||||||
|
console.error('Błąd:', error);
|
||||||
|
});
|
||||||
|
} else {
|
||||||
|
alert('Piłka nie jest obecnie na boisku.');
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
/* Funkcja dodająca listener do boiska*/
|
/* Funkcja dodająca listener do boiska*/
|
||||||
function boiskoListener(ev){
|
function boiskoListener(ev){
|
||||||
ev.preventDefault()
|
ev.preventDefault()
|
||||||
|
Binary file not shown.
@ -3,9 +3,9 @@ import pandas as pd
|
|||||||
from math import sqrt
|
from math import sqrt
|
||||||
|
|
||||||
# Funkcja zwraca prawdopodobieństwo zdobycia gola
|
# Funkcja zwraca prawdopodobieństwo zdobycia gola
|
||||||
def LogisticRegression_predict_proba(position_x, position_y, angle, match_minute, Number_Intervening_Opponents, Number_Intervening_Teammates, isFoot, isHead):
|
def LogisticRegression_predict_proba(position_x, position_y, distance_to_goalM, angle, match_minute, Number_Intervening_Opponents, Number_Intervening_Teammates, isFoot, isHead):
|
||||||
|
|
||||||
distance_to_goalM = sqrt(( (position_x**2) + (position_y**2)))
|
# distance_to_goalM = sqrt(( (position_x**2) + (position_y**2)))
|
||||||
|
|
||||||
model = load('regresja_logistyczna.joblib')
|
model = load('regresja_logistyczna.joblib')
|
||||||
X_new = pd.DataFrame(columns=['position_x', 'position_y', 'distance_to_goalM', 'angle','match_minute', 'Number_Intervening_Opponents','Number_Intervening_Teammates', 'isFoot', 'isHead'])
|
X_new = pd.DataFrame(columns=['position_x', 'position_y', 'distance_to_goalM', 'angle','match_minute', 'Number_Intervening_Opponents','Number_Intervening_Teammates', 'isFoot', 'isHead'])
|
||||||
@ -13,3 +13,80 @@ def LogisticRegression_predict_proba(position_x, position_y, angle, match_minute
|
|||||||
return model.predict_proba(X_new)[0][1].round(2)
|
return model.predict_proba(X_new)[0][1].round(2)
|
||||||
|
|
||||||
#kolejne modele
|
#kolejne modele
|
||||||
|
|
||||||
|
def xgboost_predict_proba(minute, position_name, shot_body_part_name, shot_technique_name,
|
||||||
|
shot_type_name, shot_first_time, shot_one_on_one,
|
||||||
|
shot_aerial_won, shot_deflected, shot_open_goal,
|
||||||
|
shot_follows_dribble, shot_redirect, x1, y1,
|
||||||
|
number_of_players_opponents, number_of_players_teammates,
|
||||||
|
angle, distance, x_player_opponent_Goalkeeper,
|
||||||
|
x_player_opponent_8, x_player_opponent_1, x_player_opponent_2,
|
||||||
|
x_player_opponent_3, x_player_teammate_1, x_player_opponent_4,
|
||||||
|
x_player_opponent_5, x_player_opponent_6, x_player_teammate_2,
|
||||||
|
x_player_opponent_9, x_player_opponent_10, x_player_opponent_11,
|
||||||
|
x_player_teammate_3, x_player_teammate_4, x_player_teammate_5,
|
||||||
|
x_player_teammate_6, x_player_teammate_7, x_player_teammate_8,
|
||||||
|
x_player_teammate_9, x_player_teammate_10,
|
||||||
|
y_player_opponent_Goalkeeper, y_player_opponent_8,
|
||||||
|
y_player_opponent_1, y_player_opponent_2, y_player_opponent_3,
|
||||||
|
y_player_teammate_1, y_player_opponent_4, y_player_opponent_5,
|
||||||
|
y_player_opponent_6, y_player_teammate_2, y_player_opponent_9,
|
||||||
|
y_player_opponent_10, y_player_opponent_11, y_player_teammate_3,
|
||||||
|
y_player_teammate_4, y_player_teammate_5, y_player_teammate_6,
|
||||||
|
y_player_teammate_7, y_player_teammate_8, y_player_teammate_9,
|
||||||
|
y_player_teammate_10, x_player_opponent_7, y_player_opponent_7,
|
||||||
|
x_player_teammate_Goalkeeper, y_player_teammate_Goalkeeper,
|
||||||
|
shot_kick_off):
|
||||||
|
|
||||||
|
model = load('xgboost.joblib')
|
||||||
|
X_new = pd.DataFrame(columns=['minute', 'position_name', 'shot_body_part_name', 'shot_technique_name',
|
||||||
|
'shot_type_name', 'shot_first_time', 'shot_one_on_one',
|
||||||
|
'shot_aerial_won', 'shot_deflected', 'shot_open_goal',
|
||||||
|
'shot_follows_dribble', 'shot_redirect', 'x1', 'y1',
|
||||||
|
'number_of_players_opponents', 'number_of_players_teammates',
|
||||||
|
'angle', 'distance', 'x_player_opponent_Goalkeeper',
|
||||||
|
'x_player_opponent_8', 'x_player_opponent_1', 'x_player_opponent_2',
|
||||||
|
'x_player_opponent_3', 'x_player_teammate_1', 'x_player_opponent_4',
|
||||||
|
'x_player_opponent_5', 'x_player_opponent_6', 'x_player_teammate_2',
|
||||||
|
'x_player_opponent_9', 'x_player_opponent_10', 'x_player_opponent_11',
|
||||||
|
'x_player_teammate_3', 'x_player_teammate_4', 'x_player_teammate_5',
|
||||||
|
'x_player_teammate_6', 'x_player_teammate_7', 'x_player_teammate_8',
|
||||||
|
'x_player_teammate_9', 'x_player_teammate_10',
|
||||||
|
'y_player_opponent_Goalkeeper', 'y_player_opponent_8',
|
||||||
|
'y_player_opponent_1', 'y_player_opponent_2', 'y_player_opponent_3',
|
||||||
|
'y_player_teammate_1', 'y_player_opponent_4', 'y_player_opponent_5',
|
||||||
|
'y_player_opponent_6', 'y_player_teammate_2', 'y_player_opponent_9',
|
||||||
|
'y_player_opponent_10', 'y_player_opponent_11', 'y_player_teammate_3',
|
||||||
|
'y_player_teammate_4', 'y_player_teammate_5', 'y_player_teammate_6',
|
||||||
|
'y_player_teammate_7', 'y_player_teammate_8', 'y_player_teammate_9',
|
||||||
|
'y_player_teammate_10', 'x_player_opponent_7', 'y_player_opponent_7',
|
||||||
|
'x_player_teammate_Goalkeeper', 'y_player_teammate_Goalkeeper',
|
||||||
|
'shot_kick_off'])
|
||||||
|
|
||||||
|
X_new.loc[len(X_new.index)] = [minute, position_name, shot_body_part_name, shot_technique_name,
|
||||||
|
shot_type_name, shot_first_time, shot_one_on_one,
|
||||||
|
shot_aerial_won, shot_deflected, shot_open_goal,
|
||||||
|
shot_follows_dribble, shot_redirect, x1, y1,
|
||||||
|
number_of_players_opponents, number_of_players_teammates,
|
||||||
|
angle, distance, x_player_opponent_Goalkeeper,
|
||||||
|
x_player_opponent_8, x_player_opponent_1, x_player_opponent_2,
|
||||||
|
x_player_opponent_3, x_player_teammate_1, x_player_opponent_4,
|
||||||
|
x_player_opponent_5, x_player_opponent_6, x_player_teammate_2,
|
||||||
|
x_player_opponent_9, x_player_opponent_10, x_player_opponent_11,
|
||||||
|
x_player_teammate_3, x_player_teammate_4, x_player_teammate_5,
|
||||||
|
x_player_teammate_6, x_player_teammate_7, x_player_teammate_8,
|
||||||
|
x_player_teammate_9, x_player_teammate_10,
|
||||||
|
y_player_opponent_Goalkeeper, y_player_opponent_8,
|
||||||
|
y_player_opponent_1, y_player_opponent_2, y_player_opponent_3,
|
||||||
|
y_player_teammate_1, y_player_opponent_4, y_player_opponent_5,
|
||||||
|
y_player_opponent_6, y_player_teammate_2, y_player_opponent_9,
|
||||||
|
y_player_opponent_10, y_player_opponent_11, y_player_teammate_3,
|
||||||
|
y_player_teammate_4, y_player_teammate_5, y_player_teammate_6,
|
||||||
|
y_player_teammate_7, y_player_teammate_8, y_player_teammate_9,
|
||||||
|
y_player_teammate_10, x_player_opponent_7, y_player_opponent_7,
|
||||||
|
x_player_teammate_Goalkeeper, y_player_teammate_Goalkeeper,
|
||||||
|
shot_kick_off]
|
||||||
|
return model.predict_proba(X_new)[0][1].round(2)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,36 +1,116 @@
|
|||||||
from flask import Flask
|
from flask import Flask, request, jsonify
|
||||||
from flask_cors import CORS
|
from flask_cors import CORS
|
||||||
from modele.modele import LogisticRegression_predict_proba
|
from modele.modele import LogisticRegression_predict_proba, xgboost_predict_proba
|
||||||
|
import math
|
||||||
|
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
|
|
||||||
CORS(app)
|
CORS(app)
|
||||||
|
app.config['CORS_HEADERS'] = 'Content-Type'
|
||||||
|
|
||||||
|
def loc2angle(x, y):
|
||||||
|
rads = math.atan(7.32 * x / (x**2 + (y - 34)**2 - (7.32/2)**2))
|
||||||
|
rads = math.pi + rads if rads < 0 else rads
|
||||||
|
deg = math.degrees(rads)
|
||||||
|
return deg
|
||||||
|
|
||||||
|
def loc2distance(x, y):
|
||||||
|
return math.sqrt(x**2 + (y - 34)**2)
|
||||||
|
|
||||||
|
def loc2locdistance(x1, y1, x2, y2):
|
||||||
|
return math.sqrt((x1 - x2)**2 + (y1 - y2)**2)
|
||||||
|
|
||||||
|
|
||||||
# model Api
|
# model Api
|
||||||
|
<<<<<<< HEAD
|
||||||
@app.route("/members")
|
@app.route("/members")
|
||||||
def members():
|
def members():
|
||||||
return "dnjss"
|
return "dnjss"
|
||||||
|
=======
|
||||||
|
# @app.route("/members")
|
||||||
|
# def members():
|
||||||
|
# return{"members":["Member1","Member2","Member3"]}
|
||||||
|
>>>>>>> 0b5e2681184a215a830217fb15fc4be882e06e8c
|
||||||
|
|
||||||
# zapytanie o regresje logistyczną na podstawie pozycji piłki
|
# zapytanie o regresje logistyczną na podstawie pozycji piłki
|
||||||
|
|
||||||
@app.route("/LRegresion<x>&<y>")
|
# @app.route("/LRegresion<x>&<y>")
|
||||||
def LRegresion(x,y):
|
@app.route("/get_model", methods = ['GET'])
|
||||||
|
# def get_model():
|
||||||
|
|
||||||
x = int(x[0:2])
|
# # x = int(x[0:2])
|
||||||
y = int(y[0:2])
|
# # y = int(y[0:2])
|
||||||
|
# x = request.args.get('x', type=float)
|
||||||
|
# y = request.args.get('y', type=float)
|
||||||
|
# ## change model on xgboost
|
||||||
|
# ## add angle, match minutes and number of players
|
||||||
|
|
||||||
|
# angle = loc2angle(x = x, y = y)
|
||||||
|
# dist = loc2distance(x = x, y = y)
|
||||||
|
|
||||||
|
# if y is None and x is None:
|
||||||
|
# return jsonify({"error": "Brak wymaganych parametrów"}), 400
|
||||||
|
|
||||||
|
# response = xgboost_predict_proba(minute = 20, position_name, shot_body_part_name, shot_technique_name,
|
||||||
|
# shot_type_name, shot_first_time, shot_one_on_one,
|
||||||
|
# shot_aerial_won, shot_deflected, shot_open_goal,
|
||||||
|
# shot_follows_dribble, shot_redirect, x1 = x, y1 = y,
|
||||||
|
# number_of_players_opponents, number_of_players_teammates,
|
||||||
|
# angle = angle, distance = dist, x_player_opponent_Goalkeeper,
|
||||||
|
# x_player_opponent_8, x_player_opponent_1, x_player_opponent_2,
|
||||||
|
# x_player_opponent_3, x_player_teammate_1, x_player_opponent_4,
|
||||||
|
# x_player_opponent_5, x_player_opponent_6, x_player_teammate_2,
|
||||||
|
# x_player_opponent_9, x_player_opponent_10, x_player_opponent_11,
|
||||||
|
# x_player_teammate_3, x_player_teammate_4, x_player_teammate_5,
|
||||||
|
# x_player_teammate_6, x_player_teammate_7, x_player_teammate_8,
|
||||||
|
# x_player_teammate_9, x_player_teammate_10,
|
||||||
|
# y_player_opponent_Goalkeeper, y_player_opponent_8,
|
||||||
|
# y_player_opponent_1, y_player_opponent_2, y_player_opponent_3,
|
||||||
|
# y_player_teammate_1, y_player_opponent_4, y_player_opponent_5,
|
||||||
|
# y_player_opponent_6, y_player_teammate_2, y_player_opponent_9,
|
||||||
|
# y_player_opponent_10, y_player_opponent_11, y_player_teammate_3,
|
||||||
|
# y_player_teammate_4, y_player_teammate_5, y_player_teammate_6,
|
||||||
|
# y_player_teammate_7, y_player_teammate_8, y_player_teammate_9,
|
||||||
|
# y_player_teammate_10, x_player_opponent_7, y_player_opponent_7,
|
||||||
|
# x_player_teammate_Goalkeeper, y_player_teammate_Goalkeeper,
|
||||||
|
# shot_kick_off)
|
||||||
|
# #print(x)
|
||||||
|
# #print(y)
|
||||||
|
# #print(response)
|
||||||
|
# res = str(response)
|
||||||
|
# #return {"response":res}
|
||||||
|
# return jsonify({"response":res})
|
||||||
|
|
||||||
|
def get_model():
|
||||||
|
|
||||||
|
# x = int(x[0:2])
|
||||||
|
# y = int(y[0:2])
|
||||||
|
x = request.args.get('x', type=float)
|
||||||
|
y = request.args.get('y', type=float)
|
||||||
|
## change model on xgboost
|
||||||
|
## add angle, match minutes and number of players
|
||||||
|
|
||||||
|
angle = loc2angle(x = x, y = y)
|
||||||
|
dist = loc2distance(x = x, y = y)
|
||||||
|
|
||||||
|
if y is None and x is None:
|
||||||
|
return jsonify({"error": "Brak wymaganych parametrów"}), 400
|
||||||
|
|
||||||
response = LogisticRegression_predict_proba(position_x=x,
|
response = LogisticRegression_predict_proba(position_x=x,
|
||||||
position_y=y,
|
position_y=y,
|
||||||
angle = 13.67,
|
distance_to_goalM = dist,
|
||||||
|
angle = angle,
|
||||||
match_minute=13,
|
match_minute=13,
|
||||||
Number_Intervening_Opponents=3,
|
Number_Intervening_Opponents=3,
|
||||||
Number_Intervening_Teammates=0,
|
Number_Intervening_Teammates=0,
|
||||||
isFoot=1,
|
isFoot=1,
|
||||||
isHead=0)
|
isHead=0)
|
||||||
print(x)
|
#print(x)
|
||||||
print(y)
|
#print(y)
|
||||||
print(response)
|
#print(response)
|
||||||
return {"response":[str(response)]}
|
res = str(response)
|
||||||
|
#return {"response":res}
|
||||||
|
return jsonify({"response":res})
|
||||||
|
|
||||||
# uruchomienie serwera
|
# uruchomienie serwera
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
@ -114,7 +114,7 @@ loc2angle <- function(x, y) {
|
|||||||
|
|
||||||
# distance to goal
|
# distance to goal
|
||||||
loc2distance <- function(x, y) {
|
loc2distance <- function(x, y) {
|
||||||
sqrt(x^2 + y^2)
|
sqrt(x^2 + (y - 34)^2)
|
||||||
}
|
}
|
||||||
|
|
||||||
# distance between two points on the pitch
|
# distance between two points on the pitch
|
||||||
@ -345,5 +345,5 @@ cols <- names(data3_final)[grepl(pattern, names(data3_final))]
|
|||||||
data_final <- data3_final %>% unnest(all_of(cols))
|
data_final <- data3_final %>% unnest(all_of(cols))
|
||||||
skimr::skim(data_final)
|
skimr::skim(data_final)
|
||||||
write_csv(data_final, file = "data/final_data.csv")
|
write_csv(data_final, file = "data/final_data.csv")
|
||||||
# df_test <- read.csv("data/final_data.csv", nrows = 100)
|
df_test <- read.csv("data/final_data.csv", nrows = 1000)
|
||||||
##################### The fourth dataset ##############################
|
##################### The fourth dataset ##############################
|
||||||
|
Loading…
Reference in New Issue
Block a user