Traktor/source/NN/neural_network.py

120 lines
3.7 KiB
Python
Raw Normal View History

2024-05-25 02:07:27 +02:00
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
2024-05-25 18:41:25 +02:00
from torchvision import datasets, transforms, utils
2024-05-25 02:07:27 +02:00
from torchvision.transforms import Compose, Lambda, ToTensor
import matplotlib.pyplot as plt
2024-05-27 05:28:48 +02:00
from NN.model import *
2024-05-25 22:30:04 +02:00
from PIL import Image
2024-06-04 16:55:27 +02:00
import pygame
2024-05-25 02:07:27 +02:00
2024-05-27 05:28:48 +02:00
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
2024-05-25 18:41:25 +02:00
2024-05-25 02:07:27 +02:00
#data transform to tensors:
2024-05-25 18:41:25 +02:00
data_transformer = transforms.Compose([
transforms.Resize((100, 100)),
2024-05-25 02:07:27 +02:00
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5 ), (0.5, 0.5, 0.5))
2024-05-25 02:07:27 +02:00
])
#loading data:
train_set = datasets.ImageFolder(root='resources/train', transform=data_transformer)
test_set = datasets.ImageFolder(root='resources/test', transform=data_transformer)
2024-05-25 02:07:27 +02:00
#to mozna nawet przerzucic do funkcji train:
# train_loader = DataLoader(train_set, batch_size=64, shuffle=True)
#test_loader = DataLoader(test_set, batch_size=32, shuffle=True)
2024-05-25 02:07:27 +02:00
#function for training model
def train(model, dataset, iter=100, batch_size=64):
2024-05-27 04:27:46 +02:00
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
criterion = nn.NLLLoss()
train_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
model.train()
for epoch in range(iter):
for inputs, labels in train_loader:
optimizer.zero_grad()
output = model(inputs.to(device))
loss = criterion(output, labels.to(device))
loss.backward()
optimizer.step()
2024-05-25 18:41:25 +02:00
if epoch % 10 == 0:
print('epoch: %3d loss: %.4f' % (epoch, loss))
#function for getting accuracy
def accuracy(model, dataset):
model.eval()
2024-05-25 22:30:04 +02:00
with torch.no_grad():
correct = sum([
(model(inputs.to(device)).argmax(dim=1) == labels.to(device)).sum()
for inputs, labels in DataLoader(dataset, batch_size=64, shuffle=True)
])
return correct.float() / len(dataset)
2024-05-25 02:07:27 +02:00
2024-05-27 05:28:48 +02:00
# model = Conv_Neural_Network_Model()
# model.to(device)
2024-05-25 22:30:04 +02:00
#loading the already saved model:
2024-05-27 05:28:48 +02:00
# model.load_state_dict(torch.load('CNN_model.pth'))
# model.eval()
2024-05-25 22:30:04 +02:00
2024-05-27 04:27:46 +02:00
# #training the model:
2024-05-25 22:30:04 +02:00
# train(model, train_set)
# print(f"Accuracy of the network is: {100*accuracy(model, test_set)}%")
2024-05-27 04:27:46 +02:00
# torch.save(model.state_dict(), 'CNN_model.pth')
2024-05-25 22:30:04 +02:00
def load_model():
model = Conv_Neural_Network_Model()
2024-05-27 05:28:48 +02:00
model.load_state_dict(torch.load('CNN_model.pth', map_location=torch.device('cpu')))
model.eval()
return model
def load_image(image_path):
2024-05-27 05:28:48 +02:00
testImage = Image.open(image_path).convert('RGB')
testImage = data_transformer(testImage)
testImage = testImage.unsqueeze(0)
return testImage
2024-06-04 16:55:27 +02:00
def display_image(screen, image_path, position):
image = pygame.image.load(image_path)
image = pygame.transform.scale(image, (250, 250))
screen.blit(image, position)
def display_result(screen, position, predicted_class):
font = pygame.font.Font(None, 30)
displayed_text = font.render("The predicted image is: "+str(predicted_class), 1, (255,255,255))
screen.blit(displayed_text, position)
def guess_image(model, image_tensor):
with torch.no_grad():
testOutput = model(image_tensor)
_, predicted = torch.max(testOutput, 1)
predicted_class = train_set.classes[predicted.item()]
return predicted_class
2024-05-25 22:30:04 +02:00
#TEST - loading the image and getting results:
2024-05-27 05:28:48 +02:00
# testImage_path = 'resources/images/plant_photos/1c76aa4d-11f4-47d1-8bdd-2cb78deeeccf.jpg'
# testImage = Image.open(testImage_path)
# testImage = data_transformer(testImage)
# testImage = testImage.unsqueeze(0)
# testImage = testImage.to(device)
# model.load_state_dict(torch.load('CNN_model.pth'))
# model.to(device)
# model.eval()
# testOutput = model(testImage)
# _, predicted = torch.max(testOutput, 1)
# predicted_class = train_set.classes[predicted.item()]
# print(f'The predicted class is: {predicted_class}')