Merge genetic_algorithms with final_show branch #28
23
App.py
23
App.py
@ -10,6 +10,7 @@ import Ui
|
|||||||
import BFS
|
import BFS
|
||||||
import AStar
|
import AStar
|
||||||
import neuralnetwork
|
import neuralnetwork
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
bfs1_flag=False
|
bfs1_flag=False
|
||||||
@ -20,8 +21,9 @@ Astar2 = False
|
|||||||
if bfs3_flag or Astar or Astar2:
|
if bfs3_flag or Astar or Astar2:
|
||||||
Pole.stoneFlag = True
|
Pole.stoneFlag = True
|
||||||
TreeFlag=False
|
TreeFlag=False
|
||||||
nnFlag=True
|
nnFlag=False
|
||||||
newModel=False
|
newModel=False
|
||||||
|
finalFlag = True
|
||||||
|
|
||||||
pygame.init()
|
pygame.init()
|
||||||
show_console=True
|
show_console=True
|
||||||
@ -43,7 +45,15 @@ def init_demo(): #Demo purpose
|
|||||||
old_info=""
|
old_info=""
|
||||||
traktor.draw_tractor()
|
traktor.draw_tractor()
|
||||||
time.sleep(2)
|
time.sleep(2)
|
||||||
|
if not finalFlag:
|
||||||
pole.randomize_colors(nnFlag)
|
pole.randomize_colors(nnFlag)
|
||||||
|
else:
|
||||||
|
population = 120
|
||||||
|
iterat = 2500
|
||||||
|
roulette = True
|
||||||
|
with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||||
|
garden_data = json.load(file)
|
||||||
|
pole.setPlantsByList(garden_data)
|
||||||
traktor.draw_tractor()
|
traktor.draw_tractor()
|
||||||
start_flag=True
|
start_flag=True
|
||||||
while True:
|
while True:
|
||||||
@ -75,7 +85,7 @@ def init_demo(): #Demo purpose
|
|||||||
print_to_console("Traktor porusza sie obliczona sciezka BFS")
|
print_to_console("Traktor porusza sie obliczona sciezka BFS")
|
||||||
traktor.move_by_root(bfsRoot2, pole, [traktor.irrigateSlot])
|
traktor.move_by_root(bfsRoot2, pole, [traktor.irrigateSlot])
|
||||||
if(bfs3_flag):
|
if(bfs3_flag):
|
||||||
bfsRoot3 = BFS.BFS3({'x': 0, 'y': 0, 'direction': "E"})
|
bfsRoot3 = BFS.BFS3({'x': 0, 'y': 0, 'direction': "E"},goalTreasure)
|
||||||
#displayControler: NUM_X: 20, NUM_Y: 12 (skarb) CHANGE THIS IN DCON BY HAND!!!!!!!!
|
#displayControler: NUM_X: 20, NUM_Y: 12 (skarb) CHANGE THIS IN DCON BY HAND!!!!!!!!
|
||||||
bfsRoot3.reverse()
|
bfsRoot3.reverse()
|
||||||
print_to_console("Traktor porusza sie obliczona sciezka BFS")
|
print_to_console("Traktor porusza sie obliczona sciezka BFS")
|
||||||
@ -128,11 +138,16 @@ def init_demo(): #Demo purpose
|
|||||||
print_to_console("sieć nuronowa nauczona")
|
print_to_console("sieć nuronowa nauczona")
|
||||||
print('model został wygenerowany')
|
print('model został wygenerowany')
|
||||||
else:
|
else:
|
||||||
model = neuralnetwork.loadModel('model.pth')
|
model = neuralnetwork.loadModel('model_500_hidden.pth')
|
||||||
print_to_console("model został załądowny")
|
print_to_console("model został załądowny")
|
||||||
testset = neuralnetwork.getDataset(False)
|
testset = neuralnetwork.getDataset(False)
|
||||||
print(neuralnetwork.accuracy(model, testset))
|
print(neuralnetwork.accuracy(model, testset))
|
||||||
traktor.snake_move_predict_plant(pole, model)
|
traktor.snake_move_predict_plant(pole, model, headers=['Coords','Real plant','Predicted plant','Result','Fertilizer'], actions=[traktor.fertilize_slot])
|
||||||
|
if(finalFlag):
|
||||||
|
pass
|
||||||
|
model = neuralnetwork.loadModel('model_500_hidden.pth')
|
||||||
|
Tractor.drzewo.treeLearn()
|
||||||
|
traktor.snake_move_predict_plant(pole, model, headers=['Coords','Real plant','Predicted plant','Result','Water decision'], actions=[traktor.irigate_slot_NN])
|
||||||
start_flag=False
|
start_flag=False
|
||||||
# demo_move()
|
# demo_move()
|
||||||
old_info=get_info(old_info)
|
old_info=get_info(old_info)
|
||||||
|
6
BFS.py
6
BFS.py
@ -133,8 +133,12 @@ def check3(tab, state):
|
|||||||
return True
|
return True
|
||||||
|
|
||||||
|
|
||||||
def BFS3(istate):
|
def BFS3(istate,GT):
|
||||||
|
randomGT=False
|
||||||
|
if(randomGT==True):
|
||||||
goalTreassuere = (random.randint(0,NUM_X-1), random.randint(0,NUM_Y-1))
|
goalTreassuere = (random.randint(0,NUM_X-1), random.randint(0,NUM_Y-1))
|
||||||
|
else:
|
||||||
|
goalTreassuere=GT
|
||||||
print(goalTreassuere)
|
print(goalTreassuere)
|
||||||
fringe = []
|
fringe = []
|
||||||
explored = []
|
explored = []
|
||||||
|
@ -8,7 +8,7 @@ class Drzewo:
|
|||||||
self.tree=self.treeLearn()
|
self.tree=self.treeLearn()
|
||||||
|
|
||||||
def treeLearn(self):
|
def treeLearn(self):
|
||||||
csvdata=pandas.read_csv('Data/dataTree.csv')
|
csvdata=pandas.read_csv('Data/dataTree2.csv')
|
||||||
#csvdata = pandas.read_csv('Data/dataTree2.csv')
|
#csvdata = pandas.read_csv('Data/dataTree2.csv')
|
||||||
x=csvdata[atributes]
|
x=csvdata[atributes]
|
||||||
decision=csvdata['action']
|
decision=csvdata['action']
|
||||||
|
139
GeneticAccuracy.py
Normal file
139
GeneticAccuracy.py
Normal file
@ -0,0 +1,139 @@
|
|||||||
|
import json
|
||||||
|
import random
|
||||||
|
|
||||||
|
from displayControler import NUM_Y, NUM_X
|
||||||
|
|
||||||
|
iterat = 2500
|
||||||
|
population = 120
|
||||||
|
roulette = True
|
||||||
|
|
||||||
|
plants = ['corn', 'potato', 'tomato', 'carrot']
|
||||||
|
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
|
||||||
|
yield_reduction = {
|
||||||
|
'corn': {'corn': -4.5, 'potato': -3, 'tomato': -7, 'carrot': -7},
|
||||||
|
'potato': {'corn': -7, 'potato': -5, 'tomato': -10, 'carrot': -6},
|
||||||
|
'tomato': {'corn': -4, 'potato': -5, 'tomato': -7, 'carrot': -7},
|
||||||
|
'carrot': {'corn': -11, 'potato': -5, 'tomato': -4, 'carrot': -7}
|
||||||
|
}
|
||||||
|
yield_reduction2 = {
|
||||||
|
'corn': {'corn': None, 'potato': -4, 'tomato': -2, 'carrot': -4},
|
||||||
|
'potato': {'corn': None, 'potato': -5, 'tomato': -5, 'carrot': -2},
|
||||||
|
'tomato': {'corn': -5, 'potato': -3, 'tomato': -7, 'carrot': None},
|
||||||
|
'carrot': {'corn': -3, 'potato': -6, 'tomato': -4, 'carrot': -9}
|
||||||
|
}
|
||||||
|
yield_multiplier = {'corn': 1.25, 'potato': 1.17, 'tomato': 1.22, 'carrot': 1.13}
|
||||||
|
yield_multiplier2 = {'corn': 1.25, 'potato': 1.19, 'tomato': 1.22, 'carrot': 1.15}
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_yields(garden):
|
||||||
|
rows = len(garden)
|
||||||
|
cols = len(garden[0])
|
||||||
|
|
||||||
|
total_yields = 0
|
||||||
|
|
||||||
|
for i in range(rows):
|
||||||
|
for j in range(cols):
|
||||||
|
plant = garden[i][j]
|
||||||
|
yield_count = initial_yields[plant]
|
||||||
|
|
||||||
|
# Sprawdzanie sąsiadów
|
||||||
|
neighbors = [
|
||||||
|
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
|
||||||
|
]
|
||||||
|
|
||||||
|
for ni, nj in neighbors:
|
||||||
|
if 0 <= ni < rows and 0 <= nj < cols:
|
||||||
|
neighbor_plant = garden[ni][nj]
|
||||||
|
yield_count += yield_reduction[plant][neighbor_plant]
|
||||||
|
|
||||||
|
yield_count *= yield_multiplier[plant]
|
||||||
|
total_yields += yield_count
|
||||||
|
|
||||||
|
return total_yields
|
||||||
|
|
||||||
|
|
||||||
|
def calculate_yields2(garden):
|
||||||
|
rows = len(garden)
|
||||||
|
cols = len(garden[0])
|
||||||
|
|
||||||
|
total_yields = 0
|
||||||
|
|
||||||
|
for i in range(rows):
|
||||||
|
for j in range(cols):
|
||||||
|
plant = garden[i][j]
|
||||||
|
yield_count = initial_yields[plant]
|
||||||
|
|
||||||
|
# Sprawdzanie sąsiadów
|
||||||
|
neighbors = [
|
||||||
|
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
|
||||||
|
]
|
||||||
|
neighbor_flag = False
|
||||||
|
for ni, nj in neighbors:
|
||||||
|
if 0 <= ni < rows and 0 <= nj < cols:
|
||||||
|
neighbor_plant = garden[ni][nj]
|
||||||
|
|
||||||
|
if yield_reduction2[plant][neighbor_plant] is not None: # jeśli jest wartość None to plony dla tej rośliny będą wyzerowane
|
||||||
|
yield_count += yield_reduction2[plant][neighbor_plant]
|
||||||
|
else:
|
||||||
|
neighbor_flag = True
|
||||||
|
|
||||||
|
if not neighbor_flag:
|
||||||
|
yield_count *= yield_multiplier2[plant]
|
||||||
|
total_yields += yield_count
|
||||||
|
|
||||||
|
return total_yields
|
||||||
|
|
||||||
|
|
||||||
|
def generate_garden(rows=20, cols=12):
|
||||||
|
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
|
||||||
|
|
||||||
|
|
||||||
|
def generate_garden_with_yields(t, rows=NUM_Y, cols=NUM_X):
|
||||||
|
garden = generate_garden(rows, cols)
|
||||||
|
if t == 1:
|
||||||
|
total_yields = calculate_yields(garden)
|
||||||
|
else:
|
||||||
|
total_yields = calculate_yields2(garden)
|
||||||
|
return [garden, total_yields]
|
||||||
|
|
||||||
|
|
||||||
|
def generate():
|
||||||
|
s1 = 0
|
||||||
|
s2 = 0
|
||||||
|
n = 150
|
||||||
|
for i in range(n):
|
||||||
|
x = generate_garden_with_yields(1)
|
||||||
|
s1 += x[1]
|
||||||
|
y = generate_garden_with_yields(2)
|
||||||
|
s2 += y[1]
|
||||||
|
return [s1/n, s2/n]
|
||||||
|
|
||||||
|
|
||||||
|
data = generate()
|
||||||
|
# print(data)
|
||||||
|
|
||||||
|
# Odczyt z pliku
|
||||||
|
with open(f'pole_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||||
|
garden_data = json.load(file)
|
||||||
|
|
||||||
|
# print("Odczytane dane ogrodu:")
|
||||||
|
# for row in garden_data:
|
||||||
|
# print(row)
|
||||||
|
|
||||||
|
print("Wygenerowane przy pomocy GA: ", calculate_yields(garden_data))
|
||||||
|
print(f"Przeciętny ogród wygenerowany randomowo ma {data[0]} plonów")
|
||||||
|
print("Uśredniony przyrost plonów (ile razy więcej plonów): ", calculate_yields(garden_data)/data[0])
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# Odczyt z pliku
|
||||||
|
with open(f'pole2_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||||
|
garden_data2 = json.load(file)
|
||||||
|
|
||||||
|
# print("Odczytane dane ogrodu:")
|
||||||
|
# for row in garden_data2:
|
||||||
|
# print(row)
|
||||||
|
|
||||||
|
print("Wygenerowane: przy pomocy GA2", calculate_yields2(garden_data2))
|
||||||
|
print(f"Przeciętny ogród wygenerowany randomowo ma {data[1]} plonów")
|
||||||
|
print("Uśredniony przyrost plonów (ile razy więcej plonów): ", calculate_yields2(garden_data2)/data[1])
|
@ -136,7 +136,7 @@ if __name__ == '__main__':
|
|||||||
roulette = True
|
roulette = True
|
||||||
attemps = 150
|
attemps = 150
|
||||||
iterat = 2500
|
iterat = 2500
|
||||||
population = 100
|
population = 120
|
||||||
best = []
|
best = []
|
||||||
for a in range(attemps):
|
for a in range(attemps):
|
||||||
generation = generate(population)
|
generation = generate(population)
|
||||||
|
213
GeneticAlgorithm2.py
Normal file
213
GeneticAlgorithm2.py
Normal file
@ -0,0 +1,213 @@
|
|||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
from displayControler import NUM_X, NUM_Y
|
||||||
|
|
||||||
|
# Definiowanie stałych dla roślin i plonów
|
||||||
|
plants = ['corn', 'potato', 'tomato', 'carrot']
|
||||||
|
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
|
||||||
|
yield_reduction = {
|
||||||
|
'corn': {'corn': None, 'potato': -4, 'tomato': -2, 'carrot': -4},
|
||||||
|
'potato': {'corn': None, 'potato': -5, 'tomato': -5, 'carrot': -2},
|
||||||
|
'tomato': {'corn': -5, 'potato': -3, 'tomato': -7, 'carrot': None},
|
||||||
|
'carrot': {'corn': -3, 'potato': -6, 'tomato': -4, 'carrot': -9}
|
||||||
|
}
|
||||||
|
yield_multiplier = {'corn': 1.25, 'potato': 1.19, 'tomato': 1.22, 'carrot': 1.15}
|
||||||
|
|
||||||
|
|
||||||
|
# Generowanie listy 20x12 z losowo rozmieszczonymi roślinami
|
||||||
|
def generate_garden(rows=20, cols=12):
|
||||||
|
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do obliczania liczby plonów
|
||||||
|
def calculate_yields(garden):
|
||||||
|
rows = len(garden)
|
||||||
|
cols = len(garden[0])
|
||||||
|
|
||||||
|
total_yields = 0
|
||||||
|
|
||||||
|
for i in range(rows):
|
||||||
|
for j in range(cols):
|
||||||
|
plant = garden[i][j]
|
||||||
|
yield_count = initial_yields[plant]
|
||||||
|
|
||||||
|
# Sprawdzanie sąsiadów
|
||||||
|
neighbors = [
|
||||||
|
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
|
||||||
|
]
|
||||||
|
neighbor_flag = False
|
||||||
|
for ni, nj in neighbors:
|
||||||
|
if 0 <= ni < rows and 0 <= nj < cols:
|
||||||
|
neighbor_plant = garden[ni][nj]
|
||||||
|
|
||||||
|
if yield_reduction[plant][neighbor_plant] is not None: # jeśli jest wartość None to plony dla tej rośliny będą wyzerowane
|
||||||
|
yield_count += yield_reduction[plant][neighbor_plant]
|
||||||
|
else:
|
||||||
|
neighbor_flag = True
|
||||||
|
|
||||||
|
if not neighbor_flag:
|
||||||
|
yield_count *= yield_multiplier[plant]
|
||||||
|
total_yields += yield_count
|
||||||
|
|
||||||
|
return total_yields
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania planszy/ogrodu i zapisywania go jako lista z liczbą plonów
|
||||||
|
def generate_garden_with_yields(rows=NUM_Y, cols=NUM_X):
|
||||||
|
garden = generate_garden(rows, cols)
|
||||||
|
total_yields = calculate_yields(garden)
|
||||||
|
return [garden, total_yields]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania linii cięcia i zapisywania jej jako liczba roślin w kolumnie z pierwszej planszy/ogrodu
|
||||||
|
def line():
|
||||||
|
path = []
|
||||||
|
flag = False
|
||||||
|
x = random.randint(4, 8)
|
||||||
|
position = (0, x)
|
||||||
|
path.append(position)
|
||||||
|
while not flag: # wybór punktu dopóki nie wybierze się skrajnego
|
||||||
|
# prawdopodobieństwo "ruchu" -> 0.6: w prawo, 0.2: w góre, 0.2: w dół
|
||||||
|
p = [(position[0] + 1, position[1]), (position[0], position[1] + 1), (position[0], position[1] - 1)]
|
||||||
|
w = [0.6, 0.2, 0.2]
|
||||||
|
position2 = random.choices(p, w)[0]
|
||||||
|
if position2 not in path: # sprawdzenie czy dany punkt nie był już wybrany aby nie zapętlać się
|
||||||
|
path.append(position2)
|
||||||
|
position = position2
|
||||||
|
if position[0] == NUM_X or position[1] == 0 or position[1] == NUM_Y: # sprawdzenie czy osiągnięto skrajny punkt
|
||||||
|
flag = True
|
||||||
|
info = [] # przeformatowanie sposobu zapisu na liczbę roślin w kolumnie, które będzię się dzidziczyło z pierwszej planszy/ogrodu
|
||||||
|
for i in range(len(path) - 1):
|
||||||
|
if path[i + 1][0] - path[i][0] == 1:
|
||||||
|
info.append(NUM_Y - path[i][1])
|
||||||
|
if len(info) < NUM_X: # uzupełnienie informacji o dziedziczeniu z planszy/ogrodu
|
||||||
|
if path[-1:][0][1] == 0:
|
||||||
|
x = NUM_Y
|
||||||
|
else:
|
||||||
|
x = 0
|
||||||
|
while len(info) < NUM_X:
|
||||||
|
info.append(x)
|
||||||
|
# return path, info
|
||||||
|
return info
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania potomstwa
|
||||||
|
def divide_gardens(garden1, garden2):
|
||||||
|
info = line()
|
||||||
|
new_garden1 = [[] for _ in range(NUM_Y)]
|
||||||
|
new_garden2 = [[] for _ in range(NUM_Y)]
|
||||||
|
for i in range(NUM_X):
|
||||||
|
for j in range(NUM_Y):
|
||||||
|
# do utworzonych kolumn w nowych planszach/ogrodach dodajemy dziedziczone rośliny
|
||||||
|
if j < info[i]:
|
||||||
|
new_garden1[j].append(garden1[j][i])
|
||||||
|
new_garden2[j].append(garden2[j][i])
|
||||||
|
else:
|
||||||
|
new_garden1[j].append(garden2[j][i])
|
||||||
|
new_garden2[j].append(garden1[j][i])
|
||||||
|
|
||||||
|
return [new_garden1, calculate_yields(new_garden1)], [new_garden2, calculate_yields(new_garden2)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do mutacji danej planszy/ogrodu
|
||||||
|
def mutation(garden, not_used):
|
||||||
|
new_garden = copy.deepcopy(garden)
|
||||||
|
for i in range(NUM_X):
|
||||||
|
x = random.randint(0, 11) # wybieramy, w którym wierszu w i-tej kolumnie zmieniamy roślinę na inną
|
||||||
|
other_plants = [plant for plant in plants if plant != new_garden[x][i]]
|
||||||
|
new_garden[x][i] = random.choice(other_plants)
|
||||||
|
return [new_garden, calculate_yields(new_garden)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania pierwszego pokolenia
|
||||||
|
def generate(n):
|
||||||
|
generation = []
|
||||||
|
for i in range(n * 3):
|
||||||
|
generation.append(generate_garden_with_yields())
|
||||||
|
generation.sort(reverse=True, key=lambda x: x[1])
|
||||||
|
return generation[:n]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do implementacji ruletki (sposobu wyboru) - sumuje wszystkie plony generacji
|
||||||
|
def sum_yields(x):
|
||||||
|
s = 0
|
||||||
|
for i in range(len(x)):
|
||||||
|
s += x[i][1]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
roulette = True
|
||||||
|
attemps = 20
|
||||||
|
iterat = 2500
|
||||||
|
population = 120
|
||||||
|
best = []
|
||||||
|
for a in range(attemps):
|
||||||
|
generation = generate(population)
|
||||||
|
print(generation[0][1])
|
||||||
|
for i in range(iterat): # ile iteracji - nowych pokoleń
|
||||||
|
print(a, i)
|
||||||
|
new_generation = generation[:(population // 7)] # dziedziczenie x najlepszych osobników
|
||||||
|
j = 0
|
||||||
|
while j < (
|
||||||
|
population - (
|
||||||
|
population // 7)): # dobór reszty osobników do pełnej liczby populacji danego pokolenia
|
||||||
|
if roulette: # zasada ruletki -> "2 rzuty kulką"
|
||||||
|
s = sum_yields(generation) # suma wszystkich plnów całego pokolenia
|
||||||
|
z = []
|
||||||
|
if s == 0: # wtedy każdy osobnik ma takie same szanse
|
||||||
|
z.append(random.randint(0, population - 1))
|
||||||
|
z.append(random.randint(0, population - 1))
|
||||||
|
else:
|
||||||
|
weights = [] # wagi prawdopodobieństwa dla każdego osobnika generacji
|
||||||
|
pos = [] # numery od 0 do 49 odpowiadające numerom osobnikom w generacji
|
||||||
|
for i in range(population):
|
||||||
|
weights.append(generation[i][1] / s)
|
||||||
|
pos.append(i)
|
||||||
|
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
|
||||||
|
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
|
||||||
|
else: # metoda rankingu
|
||||||
|
z = random.sample(range(0, int(population // 1.7)), 2)
|
||||||
|
|
||||||
|
# krzyzowanie 90% szans, mutacja 10% szans
|
||||||
|
function = [divide_gardens, mutation]
|
||||||
|
weight = [0.9, 0.1]
|
||||||
|
fun = random.choices(function, weight)[0]
|
||||||
|
h = fun(generation[z[0]][0], generation[z[1]][0])
|
||||||
|
if len(h[0]) == 2:
|
||||||
|
new_generation.append(h[0])
|
||||||
|
new_generation.append(h[1])
|
||||||
|
j += 2
|
||||||
|
else:
|
||||||
|
new_generation.append(h)
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
new_generation.sort(reverse=True, key=lambda x: x[1]) # sortowanie malejąco listy według wartości plonów
|
||||||
|
generation = new_generation[:population]
|
||||||
|
|
||||||
|
best.append(generation[0])
|
||||||
|
|
||||||
|
best.sort(reverse=True, key=lambda x: x[1])
|
||||||
|
|
||||||
|
# Zapis do pliku
|
||||||
|
# for i in range(len(best)):
|
||||||
|
# print(best[i][1], calculate_yields(best[i][0]))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# with open(f'pole2_pop{population}_iter{iterat}_{roulette}.json', 'w') as file: # zapis planszy/ogrodu do pliku json
|
||||||
|
# json.dump(best[0][0], file, indent=4)
|
||||||
|
#
|
||||||
|
# print("Dane zapisane do pliku")
|
||||||
|
#
|
||||||
|
# Odczyt z pliku
|
||||||
|
# with open(f'pole2_pop{population}_iter{iterat}_{roulette}.json', 'r') as file:
|
||||||
|
# garden_data = json.load(file)
|
||||||
|
#
|
||||||
|
# print("Odczytane dane ogrodu:")
|
||||||
|
# for row in garden_data:
|
||||||
|
# print(row)
|
||||||
|
#
|
||||||
|
# print(calculate_yields(garden_data))
|
||||||
|
# if best[0][0] == garden_data:
|
||||||
|
# print("POPRAWNE: ", calculate_yields(garden_data), calculate_yields(best[0][0]))
|
211
GeneticAlgorithm3.py
Normal file
211
GeneticAlgorithm3.py
Normal file
@ -0,0 +1,211 @@
|
|||||||
|
import copy
|
||||||
|
import json
|
||||||
|
import random
|
||||||
|
from displayControler import NUM_X, NUM_Y
|
||||||
|
|
||||||
|
# Definiowanie stałych dla roślin i plonów
|
||||||
|
plants = ['corn', 'potato', 'tomato', 'carrot']
|
||||||
|
initial_yields = {'corn': 38, 'potato': 40, 'tomato': 43, 'carrot': 45}
|
||||||
|
yield_reduction = {
|
||||||
|
'corn': {'corn': None, 'potato': 0, 'tomato': 0, 'carrot': 0},
|
||||||
|
'potato': {'corn': None, 'potato': 0, 'tomato': 0, 'carrot': 0},
|
||||||
|
'tomato': {'corn': 0, 'potato': 0, 'tomato': 0, 'carrot': None},
|
||||||
|
'carrot': {'corn': 0, 'potato': 0, 'tomato': 0, 'carrot': 0}
|
||||||
|
}
|
||||||
|
yield_multiplier = {'corn': 1.25, 'potato': 1.19, 'tomato': 1.22, 'carrot': 1.13}
|
||||||
|
|
||||||
|
|
||||||
|
# Generowanie listy 20x12 z losowo rozmieszczonymi roślinami
|
||||||
|
def generate_garden(rows=20, cols=12):
|
||||||
|
return [[random.choice(plants) for _ in range(cols)] for _ in range(rows)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do obliczania liczby plonów
|
||||||
|
def calculate_yields(garden):
|
||||||
|
rows = len(garden)
|
||||||
|
cols = len(garden[0])
|
||||||
|
|
||||||
|
total_yields = 0
|
||||||
|
|
||||||
|
for i in range(rows):
|
||||||
|
for j in range(cols):
|
||||||
|
plant = garden[i][j]
|
||||||
|
|
||||||
|
# Sprawdzanie sąsiadów
|
||||||
|
neighbors = [
|
||||||
|
(i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1)
|
||||||
|
]
|
||||||
|
neighbor_flag = False
|
||||||
|
for ni, nj in neighbors:
|
||||||
|
if 0 <= ni < rows and 0 <= nj < cols:
|
||||||
|
neighbor_plant = garden[ni][nj]
|
||||||
|
|
||||||
|
if yield_reduction[plant][neighbor_plant] is None: # jeśli jest wartość None to plony dla tej rośliny będą wyzerowane
|
||||||
|
neighbor_flag = True
|
||||||
|
|
||||||
|
if not neighbor_flag:
|
||||||
|
total_yields += 1
|
||||||
|
|
||||||
|
return total_yields
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania planszy/ogrodu i zapisywania go jako lista z liczbą plonów
|
||||||
|
def generate_garden_with_yields(rows=NUM_Y, cols=NUM_X):
|
||||||
|
garden = generate_garden(rows, cols)
|
||||||
|
total_yields = calculate_yields(garden)
|
||||||
|
return [garden, total_yields]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania linii cięcia i zapisywania jej jako liczba roślin w kolumnie z pierwszej planszy/ogrodu
|
||||||
|
def line():
|
||||||
|
path = []
|
||||||
|
flag = False
|
||||||
|
x = random.randint(4, 8)
|
||||||
|
position = (0, x)
|
||||||
|
path.append(position)
|
||||||
|
while not flag: # wybór punktu dopóki nie wybierze się skrajnego
|
||||||
|
# prawdopodobieństwo "ruchu" -> 0.6: w prawo, 0.2: w góre, 0.2: w dół
|
||||||
|
p = [(position[0] + 1, position[1]), (position[0], position[1] + 1), (position[0], position[1] - 1)]
|
||||||
|
w = [0.6, 0.2, 0.2]
|
||||||
|
position2 = random.choices(p, w)[0]
|
||||||
|
if position2 not in path: # sprawdzenie czy dany punkt nie był już wybrany aby nie zapętlać się
|
||||||
|
path.append(position2)
|
||||||
|
position = position2
|
||||||
|
if position[0] == NUM_X or position[1] == 0 or position[1] == NUM_Y: # sprawdzenie czy osiągnięto skrajny punkt
|
||||||
|
flag = True
|
||||||
|
info = [] # przeformatowanie sposobu zapisu na liczbę roślin w kolumnie, które będzię się dzidziczyło z pierwszej planszy/ogrodu
|
||||||
|
for i in range(len(path) - 1):
|
||||||
|
if path[i + 1][0] - path[i][0] == 1:
|
||||||
|
info.append(NUM_Y - path[i][1])
|
||||||
|
if len(info) < NUM_X: # uzupełnienie informacji o dziedziczeniu z planszy/ogrodu
|
||||||
|
if path[-1:][0][1] == 0:
|
||||||
|
x = NUM_Y
|
||||||
|
else:
|
||||||
|
x = 0
|
||||||
|
while len(info) < NUM_X:
|
||||||
|
info.append(x)
|
||||||
|
# return path, info
|
||||||
|
return info
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania potomstwa
|
||||||
|
def divide_gardens(garden1, garden2):
|
||||||
|
info = line()
|
||||||
|
new_garden1 = [[] for _ in range(NUM_Y)]
|
||||||
|
new_garden2 = [[] for _ in range(NUM_Y)]
|
||||||
|
for i in range(NUM_X):
|
||||||
|
for j in range(NUM_Y):
|
||||||
|
# do utworzonych kolumn w nowych planszach/ogrodach dodajemy dziedziczone rośliny
|
||||||
|
if j < info[i]:
|
||||||
|
new_garden1[j].append(garden1[j][i])
|
||||||
|
new_garden2[j].append(garden2[j][i])
|
||||||
|
else:
|
||||||
|
new_garden1[j].append(garden2[j][i])
|
||||||
|
new_garden2[j].append(garden1[j][i])
|
||||||
|
|
||||||
|
return [new_garden1, calculate_yields(new_garden1)], [new_garden2, calculate_yields(new_garden2)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do mutacji danej planszy/ogrodu
|
||||||
|
def mutation(garden, not_used):
|
||||||
|
new_garden = copy.deepcopy(garden)
|
||||||
|
for i in range(NUM_X):
|
||||||
|
x = random.randint(0, 11) # wybieramy, w którym wierszu w i-tej kolumnie zmieniamy roślinę na inną
|
||||||
|
other_plants = [plant for plant in plants if plant != new_garden[x][i]]
|
||||||
|
new_garden[x][i] = random.choice(other_plants)
|
||||||
|
return [new_garden, calculate_yields(new_garden)]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do generowania pierwszego pokolenia
|
||||||
|
def generate(n):
|
||||||
|
generation = []
|
||||||
|
for i in range(n * 3):
|
||||||
|
generation.append(generate_garden_with_yields())
|
||||||
|
generation.sort(reverse=True, key=lambda x: x[1])
|
||||||
|
return generation[:n]
|
||||||
|
|
||||||
|
|
||||||
|
# Funkcja do implementacji ruletki (sposobu wyboru) - sumuje wszystkie plony generacji
|
||||||
|
def sum_yields(x):
|
||||||
|
s = 0
|
||||||
|
for i in range(len(x)):
|
||||||
|
s += x[i][1]
|
||||||
|
return s
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
roulette = True
|
||||||
|
attemps = 1
|
||||||
|
population = 120
|
||||||
|
best = []
|
||||||
|
iter = 0
|
||||||
|
for a in range(attemps):
|
||||||
|
generation = generate(population)
|
||||||
|
print(generation[0][1])
|
||||||
|
while generation[0][1] != NUM_X*NUM_Y: # ile iteracji - nowych pokoleń
|
||||||
|
iter += 1
|
||||||
|
print(iter)
|
||||||
|
print(generation[0][1])
|
||||||
|
new_generation = generation[:(population // 7)] # dziedziczenie x najlepszych osobników
|
||||||
|
j = 0
|
||||||
|
while j < (
|
||||||
|
population - (
|
||||||
|
population // 7)): # dobór reszty osobników do pełnej liczby populacji danego pokolenia
|
||||||
|
if roulette: # zasada ruletki -> "2 rzuty kulką"
|
||||||
|
s = sum_yields(generation) # suma wszystkich plnów całego pokolenia
|
||||||
|
z = []
|
||||||
|
if s == 0: # wtedy każdy osobnik ma takie same szanse
|
||||||
|
z.append(random.randint(0, population - 1))
|
||||||
|
z.append(random.randint(0, population - 1))
|
||||||
|
else:
|
||||||
|
weights = [] # wagi prawdopodobieństwa dla każdego osobnika generacji
|
||||||
|
pos = [] # numery od 0 do 49 odpowiadające numerom osobnikom w generacji
|
||||||
|
for i in range(population):
|
||||||
|
weights.append(generation[i][1] / s)
|
||||||
|
pos.append(i)
|
||||||
|
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
|
||||||
|
z.append(random.choices(pos, weights)[0]) # wybranie osobnika według wag prawdopodobieństwa
|
||||||
|
else: # metoda rankingu
|
||||||
|
z = random.sample(range(0, int(population // 1.7)), 2)
|
||||||
|
|
||||||
|
# krzyzowanie 90% szans, mutacja 10% szans
|
||||||
|
function = [divide_gardens, mutation]
|
||||||
|
weight = [0.9, 0.1]
|
||||||
|
fun = random.choices(function, weight)[0]
|
||||||
|
h = fun(generation[z[0]][0], generation[z[1]][0])
|
||||||
|
if len(h[0]) == 2:
|
||||||
|
new_generation.append(h[0])
|
||||||
|
new_generation.append(h[1])
|
||||||
|
j += 2
|
||||||
|
else:
|
||||||
|
new_generation.append(h)
|
||||||
|
j += 1
|
||||||
|
|
||||||
|
new_generation.sort(reverse=True, key=lambda x: x[1]) # sortowanie malejąco listy według wartości plonów
|
||||||
|
generation = new_generation[:population]
|
||||||
|
|
||||||
|
best.append(generation[0])
|
||||||
|
|
||||||
|
best.sort(reverse=True, key=lambda x: x[1])
|
||||||
|
|
||||||
|
# Zapis do pliku
|
||||||
|
# for i in range(len(best)):
|
||||||
|
# print(best[i][1], calculate_yields(best[i][0]))
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# with open(f'pole3_pop{population}_{iter}_{roulette}.json', 'w') as file: # zapis planszy/ogrodu do pliku json
|
||||||
|
# json.dump(best[0][0], file, indent=4)
|
||||||
|
#
|
||||||
|
# print("Dane zapisane do pliku")
|
||||||
|
#
|
||||||
|
# Odczyt z pliku
|
||||||
|
# with open(f'pole3_pop{population}_{iter}_{roulette}.json', 'r') as file:
|
||||||
|
# garden_data = json.load(file)
|
||||||
|
#
|
||||||
|
# print("Odczytane dane ogrodu:")
|
||||||
|
# for row in garden_data:
|
||||||
|
# print(row)
|
||||||
|
#
|
||||||
|
# print(calculate_yields(garden_data))
|
||||||
|
# if best[0][0] == garden_data:
|
||||||
|
# print("POPRAWNE: ", calculate_yields(garden_data), calculate_yields(best[0][0]))
|
22
Image.py
22
Image.py
@ -80,3 +80,25 @@ def getRandomImageFromDataBase():
|
|||||||
image = pygame.image.load(imgPath)
|
image = pygame.image.load(imgPath)
|
||||||
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||||
return image, label, imgPath
|
return image, label, imgPath
|
||||||
|
|
||||||
|
def getSpedifiedImageFromDatabase(label):
|
||||||
|
folderPath = f"dataset/test/{label}"
|
||||||
|
files = os.listdir(folderPath)
|
||||||
|
random_image = random.choice(files)
|
||||||
|
imgPath = os.path.join(folderPath, random_image)
|
||||||
|
|
||||||
|
while imgPath in imagePathList:
|
||||||
|
for event in pygame.event.get():
|
||||||
|
if event.type == pygame.QUIT:
|
||||||
|
quit()
|
||||||
|
label = random.choice(neuralnetwork.labels)
|
||||||
|
folderPath = f"dataset/test/{label}"
|
||||||
|
files = os.listdir(folderPath)
|
||||||
|
random_image = random.choice(files)
|
||||||
|
imgPath = os.path.join(folderPath, random_image)
|
||||||
|
|
||||||
|
imagePathList.append(imgPath)
|
||||||
|
|
||||||
|
image = pygame.image.load(imgPath)
|
||||||
|
image=pygame.transform.scale(image,(dCon.CUBE_SIZE,dCon.CUBE_SIZE))
|
||||||
|
return image, label, imgPath
|
||||||
|
8
Pole.py
8
Pole.py
@ -62,6 +62,14 @@ class Pole:
|
|||||||
continue
|
continue
|
||||||
else:
|
else:
|
||||||
self.slot_dict[coordinates].set_random_plant(nn)
|
self.slot_dict[coordinates].set_random_plant(nn)
|
||||||
|
def setPlantsByList(self, plantList):
|
||||||
|
pygame.display.update()
|
||||||
|
time.sleep(3)
|
||||||
|
for coordinates in self.slot_dict:
|
||||||
|
if(coordinates==(0,0)):
|
||||||
|
continue
|
||||||
|
else:
|
||||||
|
self.slot_dict[coordinates].set_specifided_plant(plantList[coordinates[1]][coordinates[0]])
|
||||||
|
|
||||||
def change_color_of_slot(self,coordinates,color): #Coordinates must be tuple (x,y) (left top slot has cord (0,0) ), color has to be from defined in Colors.py or custom in RGB value (R,G,B)
|
def change_color_of_slot(self,coordinates,color): #Coordinates must be tuple (x,y) (left top slot has cord (0,0) ), color has to be from defined in Colors.py or custom in RGB value (R,G,B)
|
||||||
self.get_slot_from_cord(coordinates).color_change(color)
|
self.get_slot_from_cord(coordinates).color_change(color)
|
||||||
|
7
Slot.py
7
Slot.py
@ -50,6 +50,11 @@ class Slot:
|
|||||||
self.plant=Roslina.Roslina(self.label)
|
self.plant=Roslina.Roslina(self.label)
|
||||||
self.set_image()
|
self.set_image()
|
||||||
|
|
||||||
|
def set_specifided_plant(self, plant):
|
||||||
|
self.plant_image, self.label, self.imagePath = self.specified_plant_dataset(plant)
|
||||||
|
self.plant=Roslina.Roslina(self.label)
|
||||||
|
self.set_image()
|
||||||
|
|
||||||
def set_image(self):
|
def set_image(self):
|
||||||
if self.plant_image is None:
|
if self.plant_image is None:
|
||||||
self.plant_image = self.image_loader.return_random_plant()
|
self.plant_image = self.image_loader.return_random_plant()
|
||||||
@ -75,6 +80,8 @@ class Slot:
|
|||||||
return self.image_loader.return_random_plant()
|
return self.image_loader.return_random_plant()
|
||||||
def random_plant_dataset(self):
|
def random_plant_dataset(self):
|
||||||
return Image.getRandomImageFromDataBase()
|
return Image.getRandomImageFromDataBase()
|
||||||
|
def specified_plant_dataset(self, plant):
|
||||||
|
return Image.getSpedifiedImageFromDatabase(plant)
|
||||||
|
|
||||||
def return_plant(self):
|
def return_plant(self):
|
||||||
return self.plant
|
return self.plant
|
||||||
|
24
Tractor.py
24
Tractor.py
@ -30,6 +30,7 @@ class Tractor:
|
|||||||
DIRECTION_SOUTH = 'S'
|
DIRECTION_SOUTH = 'S'
|
||||||
DIRECTION_WEST = 'W'
|
DIRECTION_WEST = 'W'
|
||||||
DIRECTION_EAST = 'E'
|
DIRECTION_EAST = 'E'
|
||||||
|
|
||||||
def __init__(self,slot,screen, osprzet,clock,bfs2_flag):
|
def __init__(self,slot,screen, osprzet,clock,bfs2_flag):
|
||||||
self.tractor_images = {
|
self.tractor_images = {
|
||||||
Tractor.DIRECTION_NORTH: pygame.transform.scale(pygame.image.load('images/traktorN.png'),
|
Tractor.DIRECTION_NORTH: pygame.transform.scale(pygame.image.load('images/traktorN.png'),
|
||||||
@ -193,8 +194,7 @@ class Tractor:
|
|||||||
self.turn_left()
|
self.turn_left()
|
||||||
print("podlanych slotów: ", str(counter))
|
print("podlanych slotów: ", str(counter))
|
||||||
|
|
||||||
def snake_move_predict_plant(self, pole, model):
|
def snake_move_predict_plant(self, pole, model, headers, actions = None):
|
||||||
headers=['Coords','Real plant','Predicted plant','Result','Fertilizer']
|
|
||||||
print(format_string_nn.format(*headers))
|
print(format_string_nn.format(*headers))
|
||||||
initPos = (self.slot.x_axis, self.slot.y_axis)
|
initPos = (self.slot.x_axis, self.slot.y_axis)
|
||||||
count = 0
|
count = 0
|
||||||
@ -207,9 +207,11 @@ class Tractor:
|
|||||||
predictedLabel = nn.predictLabel(self.slot.imagePath, model)
|
predictedLabel = nn.predictLabel(self.slot.imagePath, model)
|
||||||
|
|
||||||
#print(str("Coords: ({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis), "real:", self.slot.label, "predicted:", predictedLabel, "correct" if (self.slot.label == predictedLabel) else "incorrect", 'nawożę za pomocą:', nn.fertilizer[predictedLabel])
|
#print(str("Coords: ({:02d}, {:02d})").format(self.slot.x_axis, self.slot.y_axis), "real:", self.slot.label, "predicted:", predictedLabel, "correct" if (self.slot.label == predictedLabel) else "incorrect", 'nawożę za pomocą:', nn.fertilizer[predictedLabel])
|
||||||
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
# print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||||
|
for a in actions:
|
||||||
|
a(predictedLabel)
|
||||||
if self.slot.label != predictedLabel:
|
if self.slot.label != predictedLabel:
|
||||||
self.slot.mark_visited()
|
# self.slot.mark_visited()
|
||||||
count += 1
|
count += 1
|
||||||
self.move_forward(pole, False)
|
self.move_forward(pole, False)
|
||||||
if i % 2 == 0 and i != dCon.NUM_Y - 1:
|
if i % 2 == 0 and i != dCon.NUM_Y - 1:
|
||||||
@ -220,7 +222,19 @@ class Tractor:
|
|||||||
self.turn_left()
|
self.turn_left()
|
||||||
self.move_forward(pole, False)
|
self.move_forward(pole, False)
|
||||||
self.turn_left()
|
self.turn_left()
|
||||||
print(f"Dobrze nawiezionych roślin: {20*12-count}, źle nawiezionych roślin: {count}")
|
print(f"Dobrze rozpoznanych roślin: {20*12-count}, źle rozpoznanych roślin: {count}")
|
||||||
|
|
||||||
|
def fertilize_slot(self, predictedLabel):
|
||||||
|
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",nn.fertilizer[predictedLabel]))
|
||||||
|
if self.slot.label != predictedLabel:
|
||||||
|
self.slot.mark_visited()
|
||||||
|
|
||||||
|
def irigate_slot_NN(self, predictedLabel):
|
||||||
|
attributes=self.get_attributes()
|
||||||
|
decision = drzewo.makeDecision(attributes)
|
||||||
|
print(format_string_nn.format(f"{self.slot.x_axis,self.slot.y_axis}",self.slot.label,predictedLabel,"correct" if (self.slot.label == predictedLabel) else "incorrect",decision))
|
||||||
|
condition.cycle()
|
||||||
|
self.waterLevel = random.randint(0, 100)
|
||||||
|
|
||||||
def snake_move(self,pole,x,y):
|
def snake_move(self,pole,x,y):
|
||||||
next_slot_coordinates=(x,y)
|
next_slot_coordinates=(x,y)
|
||||||
|
@ -77,7 +77,7 @@ def saveModel(model, path):
|
|||||||
def loadModel(path):
|
def loadModel(path):
|
||||||
print("Loading model")
|
print("Loading model")
|
||||||
model = getModel()
|
model = getModel()
|
||||||
model.load_state_dict(torch.load(path))
|
model.load_state_dict(torch.load(path, map_location=torch.device('cpu'))) # musiałem tutaj dodać to ładowanie z mapowaniem na cpu bo u mnie CUDA nie działa wy pewnie możecie to usunąć
|
||||||
return model
|
return model
|
||||||
|
|
||||||
def trainNewModel(n_iter=100, batch_size=256):
|
def trainNewModel(n_iter=100, batch_size=256):
|
||||||
|
266
pole2_pop120_iter2500_True.json
Normal file
266
pole2_pop120_iter2500_True.json
Normal file
@ -0,0 +1,266 @@
|
|||||||
|
[
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
]
|
||||||
|
]
|
266
pole3_pop120_365_True.json
Normal file
266
pole3_pop120_365_True.json
Normal file
@ -0,0 +1,266 @@
|
|||||||
|
[
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"potato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"corn"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"tomato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"tomato",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato",
|
||||||
|
"potato"
|
||||||
|
],
|
||||||
|
[
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"carrot",
|
||||||
|
"potato",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"carrot",
|
||||||
|
"corn",
|
||||||
|
"tomato"
|
||||||
|
]
|
||||||
|
]
|
17
readme.txt
17
readme.txt
@ -5,3 +5,20 @@ Required packages:
|
|||||||
pip install matplotlib
|
pip install matplotlib
|
||||||
pip install scikit-learn
|
pip install scikit-learn
|
||||||
pip install pandas
|
pip install pandas
|
||||||
|
How to run:
|
||||||
|
For BFS3:
|
||||||
|
-in App.py: -change bfs3_flag to True (other flags need to be disabled) -ensure that in App.py in BFS3 you give goalTreasure
|
||||||
|
-in Image.py change range in function return_random_plant to (0,5)
|
||||||
|
For Astar:
|
||||||
|
in App.py change Astar to True (other flags need to be disabled)
|
||||||
|
-in Image.py change range in function return_random_plant to (0,7)
|
||||||
|
For Astar2:
|
||||||
|
-in App.py change Astar2 flag to True (other flags need to be disabled)
|
||||||
|
-in Image.py change range in function return_random_plant to (0,7)
|
||||||
|
For Tree:
|
||||||
|
-in App.py change TreeFlag to True (other flags need to be disabled)
|
||||||
|
-in Image.py change range in function return_random_plant to (0,5)
|
||||||
|
For neuralnetwork:
|
||||||
|
-in App.py change nnFlag to True (other flags need to be disabled)
|
||||||
|
For final_show (neuralnetwork+tree+genetic algorithm)
|
||||||
|
-in App.py change finalFlag to True (other flags need to be disabled)
|
Loading…
Reference in New Issue
Block a user