added photo recognition
This commit is contained in:
parent
4955e737c5
commit
82ab417bfc
3
src/import torch.py
Normal file
3
src/import torch.py
Normal file
@ -0,0 +1,3 @@
|
|||||||
|
import torch
|
||||||
|
x = torch.rand(5, 3)
|
||||||
|
print(x)
|
@ -1,4 +1,3 @@
|
|||||||
import sys
|
|
||||||
import pygame
|
import pygame
|
||||||
from field import Field
|
from field import Field
|
||||||
import os
|
import os
|
||||||
|
59
src/tile.py
59
src/tile.py
@ -4,6 +4,10 @@ from kb import tractor_kb
|
|||||||
import pytholog as pl
|
import pytholog as pl
|
||||||
import random
|
import random
|
||||||
from config import TILE_SIZE, FREE_TILES
|
from config import TILE_SIZE, FREE_TILES
|
||||||
|
import torch
|
||||||
|
import torchvision.transforms as transforms
|
||||||
|
from PIL import Image
|
||||||
|
|
||||||
|
|
||||||
class Tile(pygame.sprite.Sprite):
|
class Tile(pygame.sprite.Sprite):
|
||||||
|
|
||||||
@ -26,15 +30,40 @@ class Tile(pygame.sprite.Sprite):
|
|||||||
self.set_type(random_vegetable)
|
self.set_type(random_vegetable)
|
||||||
self.water_level = random.randint(1, 5) * 10
|
self.water_level = random.randint(1, 5) * 10
|
||||||
self.stage = 'planted' # wczesniej to była self.faza = 'posadzono' ale stwierdzilem ze lepiej po angielsku???
|
self.stage = 'planted' # wczesniej to była self.faza = 'posadzono' ale stwierdzilem ze lepiej po angielsku???
|
||||||
|
|
||||||
|
classes = [
|
||||||
|
"bób", "brokuł", "brukselka", "burak", "cebula",
|
||||||
|
"cukinia", "dynia", "fasola", "groch", "jarmuż",
|
||||||
|
"kalafior", "kalarepa", "kapusta", "marchew",
|
||||||
|
"ogórek", "papryka", "pietruszka", "pomidor",
|
||||||
|
"por", "rzepa", "rzodkiewka", "sałata", "seler",
|
||||||
|
"szpinak", "ziemniak"]
|
||||||
|
|
||||||
|
model = torch.load("veggies_recognition/best_model.pth")
|
||||||
|
|
||||||
|
mean = [0.5322, 0.5120, 0.3696]
|
||||||
|
std = [0.2487, 0.2436, 0.2531]
|
||||||
|
|
||||||
|
image_transforms = transforms.Compose([
|
||||||
|
transforms.Resize((224, 224)),
|
||||||
|
transforms.ToTensor(),
|
||||||
|
transforms.Normalize(torch.Tensor(mean),torch.Tensor(std))
|
||||||
|
])
|
||||||
|
|
||||||
|
self.prediction = self.predict(model, image_transforms, self.image_path, classes)
|
||||||
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
if random.randint(1, 10) % 3 == 0:
|
if random.randint(1, 10) % 3 == 0:
|
||||||
self.set_type('water')
|
self.set_type('water')
|
||||||
self.water_level = 100
|
self.water_level = 100
|
||||||
self.stage = 'no_plant'
|
self.stage = 'no_plant'
|
||||||
|
self.prediction = 'water'
|
||||||
else:
|
else:
|
||||||
self.set_type('grass')
|
self.set_type('grass')
|
||||||
self.water_level = random.randint(1, 5) * 10
|
self.water_level = random.randint(1, 5) * 10
|
||||||
self.stage = 'no_plant'
|
self.stage = 'no_plant'
|
||||||
|
self.prediction = 'grass'
|
||||||
|
|
||||||
|
|
||||||
self.rect = self.image.get_rect()
|
self.rect = self.image.get_rect()
|
||||||
@ -43,6 +72,17 @@ class Tile(pygame.sprite.Sprite):
|
|||||||
|
|
||||||
def draw(self, surface):
|
def draw(self, surface):
|
||||||
self.tiles.draw(surface)
|
self.tiles.draw(surface)
|
||||||
|
|
||||||
|
def get_random_image_from_folder(self):
|
||||||
|
folder_path = f"veggies_recognition/veggies/testing/{self.type}"
|
||||||
|
|
||||||
|
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
|
||||||
|
random_file = random.choice(files)
|
||||||
|
|
||||||
|
#image_path = os.path.join(folder_path, random_file)
|
||||||
|
image_path = folder_path + "/" + random_file
|
||||||
|
#print(image_path)
|
||||||
|
return image_path
|
||||||
|
|
||||||
def set_type(self, type):
|
def set_type(self, type):
|
||||||
self.type = type
|
self.type = type
|
||||||
@ -51,9 +91,26 @@ class Tile(pygame.sprite.Sprite):
|
|||||||
elif self.type == 'water':
|
elif self.type == 'water':
|
||||||
image_path = "images/water.png"
|
image_path = "images/water.png"
|
||||||
else:
|
else:
|
||||||
image_path = f"images/vegetables/{self.type}.png"
|
#image_path = f"images/vegetables/{self.type}.png"
|
||||||
|
image_path = self.get_random_image_from_folder()
|
||||||
if not os.path.exists(image_path):
|
if not os.path.exists(image_path):
|
||||||
image_path = "images/question.jpg"
|
image_path = "images/question.jpg"
|
||||||
|
|
||||||
|
self.image_path = image_path
|
||||||
self.image = pygame.image.load(image_path).convert()
|
self.image = pygame.image.load(image_path).convert()
|
||||||
self.image = pygame.transform.scale(self.image, (TILE_SIZE, TILE_SIZE))
|
self.image = pygame.transform.scale(self.image, (TILE_SIZE, TILE_SIZE))
|
||||||
|
|
||||||
|
def predict(self, model, image_transforms, image_path, classes):
|
||||||
|
model = model.eval()
|
||||||
|
image = Image.open(image_path)
|
||||||
|
image = image.convert("RGB")
|
||||||
|
image = image_transforms(image).float()
|
||||||
|
image = image.unsqueeze(0)
|
||||||
|
|
||||||
|
output = model(image)
|
||||||
|
_, predicted = torch.max(output.data, 1)
|
||||||
|
|
||||||
|
#print("Rozpoznano: ", classes[predicted.item()])
|
||||||
|
return classes[predicted.item()]
|
||||||
|
|
||||||
|
|
||||||
|
@ -67,7 +67,9 @@ class Tractor(pygame.sprite.Sprite):
|
|||||||
neighbors.append('grass')
|
neighbors.append('grass')
|
||||||
|
|
||||||
input_data = {
|
input_data = {
|
||||||
'tile_type': self.get_current_tile().type,
|
#tutaj będzie dostawał informację ze zdjęcia
|
||||||
|
'tile_type': self.get_current_tile().prediction,
|
||||||
|
#'tile_type': self.get_current_tile().type,
|
||||||
'water_level': self.get_current_tile().water_level,
|
'water_level': self.get_current_tile().water_level,
|
||||||
"plant_stage": self.get_current_tile().stage,
|
"plant_stage": self.get_current_tile().stage,
|
||||||
"neighbor_N": neighbors[0],
|
"neighbor_N": neighbors[0],
|
||||||
@ -180,6 +182,7 @@ class Tractor(pygame.sprite.Sprite):
|
|||||||
if (self.get_current_tile().type != 'grass' or self.get_current_tile().type == 'water'): action = 'move'
|
if (self.get_current_tile().type != 'grass' or self.get_current_tile().type == 'water'): action = 'move'
|
||||||
self.prev_action = action
|
self.prev_action = action
|
||||||
|
|
||||||
|
|
||||||
match (action):
|
match (action):
|
||||||
case ('move'):
|
case ('move'):
|
||||||
pass
|
pass
|
||||||
@ -240,9 +243,12 @@ class Tractor(pygame.sprite.Sprite):
|
|||||||
self.get_current_tile().set_type('ziemniak')
|
self.get_current_tile().set_type('ziemniak')
|
||||||
self.move_2()
|
self.move_2()
|
||||||
#self.action_index += 1
|
#self.action_index += 1
|
||||||
print(action)
|
print("Rozpoznano: ", self.get_current_tile().prediction)
|
||||||
|
print("Co jest faktycznie: ", self.get_current_tile().type)
|
||||||
|
print("\n")
|
||||||
|
|
||||||
return
|
return
|
||||||
|
|
||||||
def log_info(self):
|
def log_info(self):
|
||||||
# print on what tile type the tractor is on
|
# print on what tile type the tractor is on
|
||||||
x = self.rect.x // TILE_SIZE
|
x = self.rect.x // TILE_SIZE
|
||||||
|
@ -1,36 +1,36 @@
|
|||||||
import torch
|
# import torch
|
||||||
import torchvision
|
# import torchvision.transforms as transforms
|
||||||
import torchvision.transforms as transforms
|
# from PIL import Image
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
classes = [
|
# classes = [
|
||||||
"bób", "brokuł", "brukselka", "burak", "cebula",
|
# "bób", "brokuł", "brukselka", "burak", "cebula",
|
||||||
"cukinia", "dynia", "fasola", "groch", "jarmuż",
|
# "cukinia", "dynia", "fasola", "groch", "jarmuż",
|
||||||
"kalafior", "kalarepa", "kapusta", "marchew",
|
# "kalafior", "kalarepa", "kapusta", "marchew",
|
||||||
"ogórek", "papryka", "pietruszka", "pomidor",
|
# "ogórek", "papryka", "pietruszka", "pomidor",
|
||||||
"por", "rzepa", "rzodkiewka", "sałata", "seler",
|
# "por", "rzepa", "rzodkiewka", "sałata", "seler",
|
||||||
"szpinak", "ziemniak"]
|
# "szpinak", "ziemniak"]
|
||||||
|
|
||||||
model = torch.load("best_model.pth")
|
# model = torch.load("best_model.pth")
|
||||||
|
|
||||||
mean = [0.5322, 0.5120, 0.3696]
|
# mean = [0.5322, 0.5120, 0.3696]
|
||||||
std = [0.2487, 0.2436, 0.2531]
|
# std = [0.2487, 0.2436, 0.2531]
|
||||||
|
|
||||||
image_transforms = transforms.Compose([
|
# image_transforms = transforms.Compose([
|
||||||
transforms.Resize((224, 224)),
|
# transforms.Resize((224, 224)),
|
||||||
transforms.ToTensor(),
|
# transforms.ToTensor(),
|
||||||
transforms.Normalize(torch.Tensor(mean),torch.Tensor(std))
|
# transforms.Normalize(torch.Tensor(mean),torch.Tensor(std))
|
||||||
])
|
# ])
|
||||||
|
|
||||||
def predict(model, image_transforms, image_path, classes):
|
# def predict(model, image_transforms, image_path, classes):
|
||||||
model = model.eval()
|
# model = model.eval()
|
||||||
image = Image.open(image_path)
|
# image = Image.open(image_path)
|
||||||
image = image_transforms(image).float()
|
# print(image_path)
|
||||||
image = image.unsqueeze(0)
|
# image = image_transforms(image).float()
|
||||||
|
# image = image.unsqueeze(0)
|
||||||
|
|
||||||
output = model(image)
|
# output = model(image)
|
||||||
_, predicted = torch.max(output.data, 1)
|
# _, predicted = torch.max(output.data, 1)
|
||||||
|
|
||||||
print(classes[predicted.item()])
|
# print(classes[predicted.item()])
|
||||||
|
|
||||||
predict(model, image_transforms, "marchew_118.jpg", classes)
|
# predict(model, image_transforms, "veggies/marchew_118.jpg", classes)
|
Before Width: | Height: | Size: 9.2 KiB After Width: | Height: | Size: 9.2 KiB |
Loading…
Reference in New Issue
Block a user