2024-08-10 15:25:51 +02:00
|
|
|
import torch
|
|
|
|
import torch.nn as nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
import torch.optim as optim
|
2024-08-11 20:26:57 +02:00
|
|
|
import io
|
2024-08-10 15:25:51 +02:00
|
|
|
from PIL import Image
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
import torchvision.transforms as transforms
|
|
|
|
from torchvision.models import vgg19, VGG19_Weights
|
|
|
|
|
|
|
|
from torchvision import models
|
|
|
|
import matplotlib.pyplot as plt
|
2024-08-11 20:26:57 +02:00
|
|
|
import torchvision.utils as vutils
|
|
|
|
|
2024-08-10 15:25:51 +02:00
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
torch.set_default_device(device)
|
|
|
|
|
|
|
|
def image_loader(image):
|
|
|
|
#image = Image.open(image_name)
|
|
|
|
# fake batch dimension required to fit network's input dimensions
|
|
|
|
|
|
|
|
imsize = 512 if torch.cuda.is_available() else 128 # use small size if no GPU
|
|
|
|
|
|
|
|
loader = transforms.Compose([
|
|
|
|
transforms.Resize(imsize), # scale imported image
|
|
|
|
transforms.ToTensor()]) # transform it into a torch tensor
|
|
|
|
image = loader(image).unsqueeze(0)
|
|
|
|
return image.to(device, torch.float)
|
|
|
|
|
|
|
|
def save_image(tensor, path):
|
|
|
|
image = tensor.clone().detach()
|
|
|
|
image = image.squeeze(0)
|
|
|
|
image = transforms.ToPILImage()(image)
|
|
|
|
image.save(path)
|
|
|
|
|
|
|
|
class ContentLoss(nn.Module):
|
|
|
|
def __init__(self, target,):
|
|
|
|
super(ContentLoss, self).__init__()
|
|
|
|
# we 'detach' the target content from the tree used
|
|
|
|
# to dynamically compute the gradient: this is a stated value,
|
|
|
|
# not a variable. Otherwise the forward method of the criterion
|
|
|
|
# will throw an error.
|
|
|
|
self.target = target.detach()
|
|
|
|
def forward(self, input):
|
|
|
|
self.loss = F.mse_loss(input, self.target)
|
|
|
|
return input
|
|
|
|
|
|
|
|
def gram_matrix(input):
|
|
|
|
a, b, c, d = input.size() # a=batch size(=1)
|
|
|
|
# b=number of feature maps
|
|
|
|
# (c,d)=dimensions of a f. map (N=c*d)
|
|
|
|
features = input.view(a * b, c * d) # resize F_XL into \hat F_XL
|
|
|
|
G = torch.mm(features, features.t()) # compute the gram product
|
|
|
|
# we 'normalize' the values of the gram matrix
|
|
|
|
# by dividing by the number of element in each feature maps.
|
|
|
|
return G.div(a * b * c * d)
|
|
|
|
|
|
|
|
class StyleLoss(nn.Module):
|
|
|
|
def __init__(self, target_feature):
|
|
|
|
super(StyleLoss, self).__init__()
|
|
|
|
self.target = gram_matrix(target_feature).detach()
|
|
|
|
def forward(self, input):
|
|
|
|
G = gram_matrix(input)
|
|
|
|
self.loss = F.mse_loss(G, self.target)
|
|
|
|
return input
|
|
|
|
|
|
|
|
#cnn = vgg19(weights=VGG19_Weights.DEFAULT).features.eval()
|
|
|
|
|
|
|
|
#cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406])
|
|
|
|
#cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225])
|
|
|
|
|
|
|
|
# create a module to normalize input image so we can easily put it in a
|
|
|
|
# ``nn.Sequential``
|
|
|
|
class Normalization(nn.Module):
|
|
|
|
def __init__(self, mean, std):
|
|
|
|
super(Normalization, self).__init__()
|
|
|
|
# .view the mean and std to make them [C x 1 x 1] so that they can
|
|
|
|
# directly work with image Tensor of shape [B x C x H x W].
|
|
|
|
# B is batch size. C is number of channels. H is height and W is width.
|
|
|
|
self.mean = torch.tensor(mean).view(-1, 1, 1)
|
|
|
|
self.std = torch.tensor(std).view(-1, 1, 1)
|
|
|
|
def forward(self, img):
|
|
|
|
# normalize ``img``
|
|
|
|
return (img - self.mean) / self.std
|
|
|
|
|
|
|
|
# desired depth layers to compute style/content losses :
|
|
|
|
content_layers_default = ['conv_4']
|
|
|
|
style_layers_default = ['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5']
|
|
|
|
|
|
|
|
def get_style_model_and_losses(cnn, normalization_mean, normalization_std,
|
|
|
|
style_img, content_img,
|
|
|
|
content_layers=content_layers_default,
|
|
|
|
style_layers=style_layers_default):
|
|
|
|
# normalization module
|
|
|
|
normalization = Normalization(normalization_mean, normalization_std)
|
|
|
|
|
|
|
|
# just in order to have an iterable access to or list of content/style
|
|
|
|
# losses
|
|
|
|
content_losses = []
|
|
|
|
style_losses = []
|
|
|
|
|
|
|
|
# assuming that ``cnn`` is a ``nn.Sequential``, so we make a new ``nn.Sequential``
|
|
|
|
# to put in modules that are supposed to be activated sequentially
|
|
|
|
model = nn.Sequential(normalization)
|
|
|
|
|
|
|
|
i = 0 # increment every time we see a conv
|
|
|
|
for layer in cnn.children():
|
|
|
|
if isinstance(layer, nn.Conv2d):
|
|
|
|
i += 1
|
|
|
|
name = 'conv_{}'.format(i)
|
|
|
|
elif isinstance(layer, nn.ReLU):
|
|
|
|
name = 'relu_{}'.format(i)
|
|
|
|
# The in-place version doesn't play very nicely with the ``ContentLoss``
|
|
|
|
# and ``StyleLoss`` we insert below. So we replace with out-of-place
|
|
|
|
# ones here.
|
|
|
|
layer = nn.ReLU(inplace=False)
|
|
|
|
elif isinstance(layer, nn.MaxPool2d):
|
|
|
|
name = 'pool_{}'.format(i)
|
|
|
|
elif isinstance(layer, nn.BatchNorm2d):
|
|
|
|
name = 'bn_{}'.format(i)
|
|
|
|
else:
|
|
|
|
raise RuntimeError('Unrecognized layer: {}'.format(layer.__class__.__name__))
|
|
|
|
|
|
|
|
model.add_module(name, layer)
|
|
|
|
|
|
|
|
if name in content_layers:
|
|
|
|
# add content loss:
|
|
|
|
target = model(content_img).detach()
|
|
|
|
content_loss = ContentLoss(target)
|
|
|
|
model.add_module("content_loss_{}".format(i), content_loss)
|
|
|
|
content_losses.append(content_loss)
|
|
|
|
|
|
|
|
if name in style_layers:
|
|
|
|
# add style loss:
|
|
|
|
target_feature = model(style_img).detach()
|
|
|
|
style_loss = StyleLoss(target_feature)
|
|
|
|
model.add_module("style_loss_{}".format(i), style_loss)
|
|
|
|
style_losses.append(style_loss)
|
|
|
|
|
|
|
|
# now we trim off the layers after the last content and style losses
|
|
|
|
for i in range(len(model) - 1, -1, -1):
|
|
|
|
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
|
|
|
|
break
|
|
|
|
|
|
|
|
model = model[:(i + 1)]
|
|
|
|
|
|
|
|
return model, style_losses, content_losses
|
|
|
|
|
|
|
|
def get_input_optimizer(input_img):
|
|
|
|
# this line to show that input is a parameter that requires a gradient
|
|
|
|
optimizer = optim.LBFGS([input_img])
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
class StyleTransferModel:
|
|
|
|
def __init__(self, content_img, style_img, num_steps=300, style_weight=1000000, content_weight=1):
|
|
|
|
self.content_img = content_img
|
|
|
|
self.style_img = style_img.resize(content_img.size)
|
|
|
|
#self.style_img = self.style_img.resize(self.content_img.size)
|
|
|
|
self.style_img = image_loader(self.style_img)
|
|
|
|
self.content_img = image_loader(self.content_img)
|
|
|
|
self.input_img = self.content_img.clone()
|
|
|
|
self.num_steps = num_steps
|
|
|
|
self.style_weight = style_weight
|
|
|
|
self.content_weight = content_weight
|
|
|
|
|
|
|
|
self.cnn = vgg19(weights=VGG19_Weights.DEFAULT).features.to(device).eval()
|
|
|
|
self.cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(device)
|
|
|
|
self.cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(device)
|
|
|
|
|
|
|
|
def run_style_transfer(self):
|
|
|
|
print('Building the style transfer model..')
|
|
|
|
model, style_losses, content_losses = get_style_model_and_losses(
|
|
|
|
self.cnn, self.cnn_normalization_mean, self.cnn_normalization_std,
|
|
|
|
self.style_img, self.content_img)
|
|
|
|
|
|
|
|
self.input_img.requires_grad_(True)
|
|
|
|
model.eval()
|
|
|
|
model.requires_grad_(False)
|
|
|
|
optimizer = get_input_optimizer(self.input_img)
|
|
|
|
|
|
|
|
print('Optimizing..')
|
|
|
|
run = [0]
|
|
|
|
while run[0] <= self.num_steps:
|
|
|
|
def closure():
|
|
|
|
with torch.no_grad():
|
|
|
|
self.input_img.clamp_(0, 1)
|
|
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
model(self.input_img)
|
|
|
|
|
|
|
|
style_score = 0
|
|
|
|
content_score = 0
|
|
|
|
|
|
|
|
for sl in style_losses:
|
|
|
|
style_score += sl.loss
|
|
|
|
for cl in content_losses:
|
|
|
|
content_score += cl.loss
|
|
|
|
|
|
|
|
style_score *= self.style_weight
|
|
|
|
content_score *= self.content_weight
|
|
|
|
|
|
|
|
loss = style_score + content_score
|
|
|
|
loss.backward()
|
|
|
|
|
|
|
|
run[0] += 1
|
|
|
|
if run[0] % 50 == 0:
|
|
|
|
print(f"run {run[0]}:")
|
|
|
|
print(f'Style Loss : {style_score.item():4f} Content Loss: {content_score.item():4f}')
|
|
|
|
print()
|
|
|
|
|
|
|
|
return style_score + content_score
|
|
|
|
|
|
|
|
optimizer.step(closure)
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
self.input_img.clamp_(0, 1)
|
|
|
|
|
|
|
|
return self.input_img
|
|
|
|
|