evaluate
This commit is contained in:
parent
91decc353d
commit
d679916066
48
JenkinsfileEvaluate
Normal file
48
JenkinsfileEvaluate
Normal file
@ -0,0 +1,48 @@
|
||||
pipeline {
|
||||
agent any
|
||||
parameters {
|
||||
buildSelector(
|
||||
name: 'BUILD_SELECTOR',
|
||||
defaultSelector: lastSuccessful(),
|
||||
description: 'A build to take the artifacts from'
|
||||
)
|
||||
string(
|
||||
name: 'EPOCHS',
|
||||
description: 'Number of epochs',
|
||||
defaultValue: '10'
|
||||
)
|
||||
}
|
||||
stages {
|
||||
stage('Copy artifacts') {
|
||||
steps {
|
||||
script {
|
||||
copyArtifacts(
|
||||
projectName: 'z-s487179-training/main',
|
||||
selector: buildParameter('BUILD_SELECTOR'),
|
||||
target: './MLEvaluate'
|
||||
)
|
||||
copyArtifacts(
|
||||
projectName: 'z-s487179-create-dataset',
|
||||
selector: buildParameter('BUILD_SELECTOR'),
|
||||
target: './MLEvaluate'
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
stage('Run training and save model') {
|
||||
steps {
|
||||
script {
|
||||
sh 'ls -l'
|
||||
docker.image('docker-image').inside {
|
||||
dir('./MLEvaluate') {
|
||||
sh 'ls -l'
|
||||
sh 'python3 ./model_test.py'
|
||||
archiveArtifacts 'plot.png'
|
||||
archiveArtifacts 'result.csv'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
@ -37,9 +37,9 @@ pipeline {
|
||||
}
|
||||
}
|
||||
}
|
||||
// post {
|
||||
// success {
|
||||
// build job: 'x1-evaluation.eg/main', wait: false
|
||||
// }
|
||||
// }
|
||||
post {
|
||||
success {
|
||||
build job: 'x1-evaluation.eg/main', wait: false
|
||||
}
|
||||
}
|
||||
}
|
80
evaluate.py
Normal file
80
evaluate.py
Normal file
@ -0,0 +1,80 @@
|
||||
import torch
|
||||
from train import MyNeuralNetwork, load_data
|
||||
from torch.utils.data import DataLoader
|
||||
import csv
|
||||
import os
|
||||
import matplotlib.pyplot as plt
|
||||
from typing import Tuple, List
|
||||
|
||||
def evaluate_model() -> Tuple[List[float], float]:
|
||||
model = MyNeuralNetwork()
|
||||
model.load_state_dict(torch.load('model.pt'))
|
||||
model.eval()
|
||||
test_dataset = load_data("gender_classification_test.csv")
|
||||
batch_size: int = 32
|
||||
test_dataloader: DataLoader = DataLoader(test_dataset, batch_size=batch_size)
|
||||
predictions = []
|
||||
labels = []
|
||||
get_label = lambda pred: 1 if pred >= 0.5 else 0
|
||||
total = 0
|
||||
correct = 0
|
||||
with torch.no_grad():
|
||||
for batch_data, batch_labels in test_dataloader:
|
||||
batch_predictions = model(batch_data)
|
||||
predicted_batch_labels = [get_label(prediction) for prediction in batch_predictions]
|
||||
total += len(predicted_batch_labels)
|
||||
batch_labels_list = list(map(int,batch_labels.tolist()))
|
||||
correct += sum(x == y for x, y in zip(predicted_batch_labels, batch_labels_list))
|
||||
predictions.extend(batch_predictions)
|
||||
labels.extend(batch_labels)
|
||||
accuracy = correct/total
|
||||
return predictions, accuracy
|
||||
|
||||
def save_predictions(predictions: list[float]) -> None:
|
||||
filename = "results.csv"
|
||||
column_name = "predict"
|
||||
with open(filename, 'w', newline='') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow([column_name])
|
||||
for result in predictions:
|
||||
loan_decision = 1 if result.item() > 0.5 else 0
|
||||
writer.writerow([loan_decision])
|
||||
|
||||
def save_accuracy(accuracy):
|
||||
filename = 'results.csv'
|
||||
if os.path.exists(filename):
|
||||
with open(filename, 'a') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow([accuracy])
|
||||
else:
|
||||
with open(filename, 'w') as file:
|
||||
writer = csv.writer(file)
|
||||
writer.writerow(['accuracy'])
|
||||
writer.writerow([accuracy])
|
||||
|
||||
def plot_accuracy():
|
||||
filename = 'results.csv'
|
||||
accuracy_results = []
|
||||
if os.path.exists(filename):
|
||||
with open(filename, 'r') as file:
|
||||
reader = csv.reader(file)
|
||||
for idx, row in enumerate(reader):
|
||||
if idx == 0:
|
||||
continue
|
||||
accuracy_results.append(float(row[0]))
|
||||
iterations = list(map(str,range(1, len(accuracy_results)+1)))
|
||||
plt.plot(iterations, accuracy_results)
|
||||
plt.xlabel('build')
|
||||
plt.ylabel('accuracy')
|
||||
plt.title("Accuracies over builds.")
|
||||
plt.savefig("plot.png")
|
||||
|
||||
def main():
|
||||
predictions, accuracy = evaluate_model()
|
||||
save_predictions(predictions)
|
||||
save_accuracy(accuracy)
|
||||
plot_accuracy()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Reference in New Issue
Block a user