Update
This commit is contained in:
parent
8b0322cd22
commit
edcfb81f61
@ -3,7 +3,7 @@ from hcloud.images.domain import Image
|
||||
from hcloud.server_types.domain import ServerType
|
||||
from hcloud.locations.domain import Location
|
||||
|
||||
servers_no = 2
|
||||
servers_no = 16
|
||||
|
||||
TOKEN = "V5gkzZ13coCVPKWkQbmbyGPyxDdsTjiubwVtx35jH7mix8A32JqM5CWJtqoLjtFK"
|
||||
|
||||
|
38
execute.py
Normal file
38
execute.py
Normal file
@ -0,0 +1,38 @@
|
||||
import asyncio
|
||||
import httpx
|
||||
|
||||
with open('my_list.txt', 'r') as file:
|
||||
ip_list = [line.strip() for line in file]
|
||||
|
||||
async def send_request(client, server_ip, rangee, sigma):
|
||||
data = {
|
||||
"a": rangee[0],
|
||||
"b": rangee[1],
|
||||
"sigma": sigma
|
||||
}
|
||||
response = await client.post(f"http://{server_ip}:8000/compute", json=data, timeout=300.0)
|
||||
return response.text
|
||||
|
||||
# Główna funkcja do wysyłania zapytań do wszystkich serwerów równocześnie
|
||||
async def main(a_start, b_end, sigma):
|
||||
num_chunks = len(ip_list)
|
||||
chunk_size = (b_end - a_start + 1) // num_chunks
|
||||
ranges = [(a_start + i * chunk_size, min(a_start + (i + 1) * chunk_size - 1, b_end))
|
||||
for i in range(num_chunks)]
|
||||
async with httpx.AsyncClient() as client:
|
||||
tasks = [send_request(client, server, rangee, sigma) for server, rangee in zip(ip_list, ranges)]
|
||||
# tasks2 = [send_request(client, server, rangee, sigma) for server, rangee in zip(ip_list, ranges[16:32])]
|
||||
# tasks.extend(tasks2)
|
||||
results = await asyncio.gather(*tasks)
|
||||
final_result = 0
|
||||
for idx, result in enumerate(results):
|
||||
final_result += int(result.strip('"'))
|
||||
final_result = final_result % 999999937
|
||||
print(final_result)
|
||||
|
||||
# Uruchomienie głównej funkcji
|
||||
if __name__ == "__main__":
|
||||
sigma = 510104288
|
||||
a = 1
|
||||
b = 7000
|
||||
asyncio.run(main(a, b, sigma))
|
30
main.py
30
main.py
@ -1,3 +1,5 @@
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from fastapi import FastAPI
|
||||
from pydantic import BaseModel
|
||||
import subprocess
|
||||
@ -11,19 +13,31 @@ class ComputeInput(BaseModel):
|
||||
b: str
|
||||
sigma: str
|
||||
|
||||
|
||||
@app.post("/compute")
|
||||
async def compute(data: ComputeInput):
|
||||
a = data.a
|
||||
b = data.b
|
||||
sigma = data.sigma
|
||||
|
||||
def run_compute(a,b,sigma):
|
||||
result = subprocess.run(
|
||||
['./computeC', a, b, sigma],
|
||||
['./computeC', str(a), str(b), sigma],
|
||||
capture_output=True,
|
||||
text=True
|
||||
)
|
||||
return result.stdout.strip()
|
||||
|
||||
@app.post("/compute")
|
||||
async def compute(data: ComputeInput):
|
||||
a_start = int(data.a)
|
||||
b_end = int(data.b)
|
||||
sigma = data.sigma
|
||||
|
||||
num_chunks = 8
|
||||
|
||||
chunk_size = (b_end - a_start + 1) // num_chunks
|
||||
ranges = [(a_start + i * chunk_size, min(a_start + (i + 1) * chunk_size - 1, b_end))
|
||||
for i in range(num_chunks)]
|
||||
|
||||
with ThreadPoolExecutor() as executor:
|
||||
futures = [executor.submit(run_compute, a, b, sigma) for a, b in ranges]
|
||||
results = [f.result() for f in futures]
|
||||
|
||||
return sum(results)
|
||||
|
||||
if __name__ == "__main__":
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
||||
|
Loading…
Reference in New Issue
Block a user