"Wiemy już, do czego służy pamięć tłumaczeń. Spróbujmy przeprowadzić mały research, którego celem będzie odkrycie, w jaki sposób do pamięci tłumaczeń podchodzą najwięksi producenci oprogramowania typu CAT.\n"
]
},
{
"cell_type": "markdown",
"id": "golden-turkish",
"metadata": {},
"source": [
"### Ćwiczenie 1: Wykonaj analizę funkcjonalności pamięci tłumaczeń w programach SDL Trados Studio 2021 oraz Kilgray memoQ. Dla obu programów wypisz funkcje, które są związane z TM oraz zaznacz, które funkcje są wspólne dla obu programów oraz których funkcji Tradosa brakuje w memoQ oraz odwrotnie."
]
},
{
"cell_type": "markdown",
"id": "retired-burke",
"metadata": {},
"source": [
"Odpowiedź:"
]
},
{
"cell_type": "markdown",
"id": "existing-approval",
"metadata": {},
"source": [
"Jedną z funkcji dostępnych we wszystkich większych programach do wspomagania tłumaczenia jest znajdowanie bardzo pewnych dopasowań w pamięci tłumaczeń. Są one zwane **ICE** (In-Context Exact match) lub 101% match. Są to takie dopasowania z pamięci tłumaczeń, dla których nie tylko zdanie źródłowe z TM jest identyczne z tłumaczonym, ale także poprzednie zdanie źródłowe z TM zgadza się z poprzednim zdaniem tłumaczonym oraz następne z TM z następnym tłumaczonym."
]
},
{
"cell_type": "markdown",
"id": "decimal-electricity",
"metadata": {},
"source": [
" Rozważmy przykładową pamięć tłumaczeń z poprzednich zajęć (można do niej dorzucić kilka przykładów):"
"### Ćwiczenie 2: Zaimplementuj funkcję ice_lookup, przyjmującą trzy parametry: aktualnie tłumaczone zdanie, poprzednio tłumaczone zdanie, następne zdanie do tłumaczenia. Funkcja powinna zwracać dopasowania typu ICE. Nie pozwól, aby doszło do błędów podczas sprawdzania pierwszego i ostatniego przykładu w pamięci (ze względu na brak odpowiednio poprzedzającego oraz następującego przykładu)."
"Inną powszechnie stosowaną techniką przeszukiwania pamięci tłumaczeń jest tzw. **fuzzy matching**. Technika ta polega na wyszukiwaniu zdań z pamięci, które są tylko podobne do zdania tłumaczonego. Na poprzednich zajęciach wykonywaliśmy funkcję tm_lookup, która pozwalała na różnicę jednego słowa."
]
},
{
"cell_type": "markdown",
"id": "beautiful-fancy",
"metadata": {},
"source": [
"Zazwyczaj jednak funkcje fuzzy match posiadają znacznie szersze możliwości. Ich działanie opiera się na zdefiniowaniu funkcji $d$ dystansu pomiędzy zdaniami $x$ i $y$. Matematycznie, funkcja dystansu posiada następujące właściwości:\n",
"Wprowadźmy jednak inną funkcję dystansu - dystans Levenshteina. Dystans Levenshteina pomiędzy dwoma łańcuchami znaków definiuje się jako minimalną liczbę operacji edycyjnych, które są potrzebne do przekształcenia jednego łańcucha znaków w drugi. Wyróżniamy trzy operacje edycyjne:\n",
"* dodanie znaku\n",
"* usunięcie znaku\n",
"* zamiana znaku na inny"
]
},
{
"cell_type": "markdown",
"id": "square-brown",
"metadata": {},
"source": [
"### Ćwiczenie 5: Czy dystans Levenshteina jest poprawną funkcją dystansu? Uzasadnij krótko swoją odpowiedź sprawdzając każdy z warunków."
"Odpowiedź: Dystans Lavenshteina jest poprawną funkcją dystansu, opisuje ilość operacji, które należy wykonać, aby porównywane do siebie zdania były takie same (np. zamiana liter, wstawienie innej litery, usunięcie litery, itp)"
"levenshtein_similarity('Spróbuj wyłączyć i włączyć komputer', 'Nie próbuj wyłączać i włączać drukarki')"
]
},
{
"cell_type": "markdown",
"id": "administrative-phoenix",
"metadata": {},
"source": [
"### Ćwiczenie 6: Napisz funkcję fuzzy_lookup, która wyszuka w pamięci tłumaczeń wszystkie zdania, których podobieństwo Levenshteina do zdania wyszukiwanego jest większe lub równe od ustalonego progu."