KWT-2024/lab/lab_02.ipynb
2024-04-20 19:58:36 +02:00

12 KiB

Logo 1

Komputerowe wspomaganie tłumaczenia

2. Zaawansowane użycie pamięci tłumaczeń [laboratoria]

Rafał Jaworski (2021)

Logo 2

Wiemy już, do czego służy pamięć tłumaczeń. Spróbujmy przeprowadzić mały research, którego celem będzie odkrycie, w jaki sposób do pamięci tłumaczeń podchodzą najwięksi producenci oprogramowania typu CAT.

Ćwiczenie 1: Wykonaj analizę funkcjonalności pamięci tłumaczeń w programach SDL Trados Studio 2021 oraz Kilgray memoQ. Dla obu programów wypisz funkcje, które są związane z TM oraz zaznacz, które funkcje są wspólne dla obu programów oraz których funkcji Tradosa brakuje w memoQ oraz odwrotnie.

Odpowiedź:

Jedną z funkcji dostępnych we wszystkich większych programach do wspomagania tłumaczenia jest znajdowanie bardzo pewnych dopasowań w pamięci tłumaczeń. Są one zwane **ICE** (In-Context Exact match) lub 101% match. Są to takie dopasowania z pamięci tłumaczeń, dla których nie tylko zdanie źródłowe z TM jest identyczne z tłumaczonym, ale także poprzednie zdanie źródłowe z TM zgadza się z poprzednim zdaniem tłumaczonym oraz następne z TM z następnym tłumaczonym.

Rozważmy przykładową pamięć tłumaczeń z poprzednich zajęć (można do niej dorzucić kilka przykładów):

translation_memory = [
                      ('Wciśnij przycisk Enter', 'Press the ENTER button'), 
                      ('Sprawdź ustawienia sieciowe', 'Check the network settings'),
                      ('Drukarka jest wyłączona', 'The printer is switched off'),
                      ('Wymagane ponowne uruchomienie komputera', 'System restart required')
                     ]

Ćwiczenie 2: Zaimplementuj funkcję ice_lookup, przyjmującą trzy parametry: aktualnie tłumaczone zdanie, poprzednio tłumaczone zdanie, następne zdanie do tłumaczenia. Funkcja powinna zwracać dopasowania typu ICE. Nie pozwól, aby doszło do błędów podczas sprawdzania pierwszego i ostatniego przykładu w pamięci (ze względu na brak odpowiednio poprzedzającego oraz następującego przykładu).

def exact_match(sentence):
    for key, entry in enumerate(translation_memory):
        if entry[0] == sentence:
            return key, entry[1]
    return None, None


def has_exact_match_on_index(index, sentence):
    return translation_memory[index][0] == sentence


def ice_lookup(sentence, prev_sentence, next_sentence):
    index, match = exact_match(sentence)
    trans_length = len(translation_memory)
    if index is None:
        return []
    if next_sentence \
            and index < trans_length \
            and not has_exact_match_on_index(index + 1, next_sentence):
        return []
    if prev_sentence \
            and index > 0 \
            and not has_exact_match_on_index(index - 1, prev_sentence):
        return []
    return [match]

Inną powszechnie stosowaną techniką przeszukiwania pamięci tłumaczeń jest tzw. fuzzy matching. Technika ta polega na wyszukiwaniu zdań z pamięci, które są tylko podobne do zdania tłumaczonego. Na poprzednich zajęciach wykonywaliśmy funkcję tm_lookup, która pozwalała na różnicę jednego słowa.

Zazwyczaj jednak funkcje fuzzy match posiadają znacznie szersze możliwości. Ich działanie opiera się na zdefiniowaniu funkcji $d$ dystansu pomiędzy zdaniami $x$ i $y$. Matematycznie, funkcja dystansu posiada następujące właściwości:

  1. $\forall_{x,y} d(x,y)\geqslant 0$
  2. $\forall_{x,y} d(x,y)=0 \Leftrightarrow x=y$
  3. $\forall_{x,y} d(x,y)=d(y,x)$
  4. $\forall_{x,y,z} d(x,y) + d(y,z)\geqslant d(x,z)$

Rozważmy następującą funkcję:

def sentence_distance(x,y):
    return abs(len(y) - len(x))

Ćwiczenie 3: Czy to jest poprawna funkcja dystansu? Które warunki spełnia?

Odpowiedź: Nie. 1, 3, 4.

A teraz spójrzmy na taką funkcję:

def sentence_distance(x,y):
    if (x == y):
        return 0
    else:
        return 3

Ćwiczenie 4: Czy to jest poprawna funkcja dystansu? Które warunki spełnia?

Odpowiedź: Tak. 1, 2, 3, 4.

Wprowadźmy jednak inną funkcję dystansu - dystans Levenshteina. Dystans Levenshteina pomiędzy dwoma łańcuchami znaków definiuje się jako minimalną liczbę operacji edycyjnych, które są potrzebne do przekształcenia jednego łańcucha znaków w drugi. Wyróżniamy trzy operacje edycyjne:

  • dodanie znaku
  • usunięcie znaku
  • zamiana znaku na inny

Ćwiczenie 5: Czy dystans Levenshteina jest poprawną funkcją dystansu? Uzasadnij krótko swoją odpowiedź sprawdzając każdy z warunków.

Odpowiedź: Tak.

  1. Liczba operacji wykonanych nie może być ujemna.
  2. Gdy x == y, nie są wymagane żadne operacje edycyjne, więc wynik funkcji to 0.
  3. Zmiana jednego łańcucha znaków w drugi, wymaga tyle samo operacji edycji, co zmiana drugiego w pierwszy. Studia -> Studiel = 2; Studiel -> Studia = 2; 2 == 2
  4. Istnieją trzy opcje
    • Jeżeli x == y == z, więc 0 + 0 == 0
    • Jeżeli x == y, x != z, a x -> z = n, to y -> z = n więc albo 0 + n == n, albo n + n > 0
    • Jeżeli x != y != z to im z jest bliżej do x, tym jest dalej od y (jednostką odległości jest liczba przekształceń). Można by to przedstawić graficznie jako trójkąt (x, y, z). z stanowi punkt na pośredniej drodze pomiędzy x i y, która nie może być dłuższa niż droga bezpośrednia - wynika to z własności trójkąta. Studia -> Studiel = 2; Studiel -> udia = 4; udia -> Studia = 2; 2 + 4 > 2; 2 + 2 == 4

W Pythonie dostępna jest biblioteka zawierająca implementację dystansu Levenshteina. Zainstaluj ją w swoim systemie przy użyciu polecenia:

pip3 install python-Levenshtein

I wypróbuj:

from Levenshtein import distance as levenshtein_distance

levenshtein_distance("kotek", "kotki")

Funkcja ta daje nam możliwość zdefiniowania podobieństwa pomiędzy zdaniami:

def levenshtein_similarity(x,y):
    return 1 - levenshtein_distance(x,y) / max(len(x), len(y))

Przetestujmy ją!

levenshtein_similarity('Program jest uruchomiony', 'Program jest uruchamiany')
0.9166666666666666
levenshtein_similarity('Spróbuj wyłączyć i włączyć komputer', 'Spróbuj włączyć i wyłączyć komputer')
0.9428571428571428
levenshtein_similarity('Spróbuj wyłączyć i włączyć komputer', 'Nie próbuj wyłączać i włączać drukarki')

Ćwiczenie 6: Napisz funkcję fuzzy_lookup, która wyszuka w pamięci tłumaczeń wszystkie zdania, których podobieństwo Levenshteina do zdania wyszukiwanego jest większe lub równe od ustalonego progu.

def fuzzy_lookup(sentence, threshold):
    results = []
    for entry in translation_memory:
        if levenshtein_similarity(entry[0], sentence) >= threshold:
            results.append(entry[1])
    return results