30 lines
1.1 KiB
Python
30 lines
1.1 KiB
Python
|
from flair.models import SequenceTagger
|
||
|
from nlu_utils import predict_single, predict_multiple, predict_and_annotate
|
||
|
|
||
|
# Exploratory tests
|
||
|
frame_model = SequenceTagger.load('frame-model/best-model.pt')
|
||
|
tests = [
|
||
|
'chciałbym zamówić pizzę',
|
||
|
'na godzinę 12',
|
||
|
'prosiłbym o pizzę z pieczarkami',
|
||
|
'to wszystko, jaka cena?',
|
||
|
'ile kosztuje pizza',
|
||
|
'do widzenia',
|
||
|
'tak',
|
||
|
'nie dziękuję',
|
||
|
'dodatkowy ser',
|
||
|
'pizzę barcelona bez cebuli',
|
||
|
]
|
||
|
|
||
|
# print("=== Exploratory tests - frame model ===")
|
||
|
for test in tests:
|
||
|
print(f"Sentence: {test}")
|
||
|
print(f"Single prediction: {predict_single(frame_model, test.split(), 'frame')}")
|
||
|
print(f"Multiple predictions: {predict_multiple(frame_model, test.split(), 'frame')}")
|
||
|
print(f"Annotated sentence: {predict_and_annotate(frame_model, test.split(), 'frame')}")
|
||
|
|
||
|
print("=== Exploratory tests - slot model ===")
|
||
|
slot_model = SequenceTagger.load('slot-model/final-model.pt')
|
||
|
for test in tests:
|
||
|
print(f"Sentence: {test}")
|
||
|
print(f"Prediction: {predict_and_annotate(slot_model, test.split(), 'slot')}")
|