Finalne poprawki
This commit is contained in:
parent
846c6991e7
commit
16af0e732c
@ -191,11 +191,11 @@
|
|||||||
6 napoje? request/drinks NoLabel
|
6 napoje? request/drinks NoLabel
|
||||||
|
|
||||||
# text: jaka cena coli?
|
# text: jaka cena coli?
|
||||||
# intent: request(price)
|
# intent: request/price
|
||||||
# slots:
|
# slots:
|
||||||
1 jaka request(price) NoLabel
|
1 jaka request/price NoLabel
|
||||||
2 cena request(price) NoLabel
|
2 cena request/price NoLabel
|
||||||
3 coli? request(price) B-drink
|
3 coli? request/price B-drink
|
||||||
|
|
||||||
# text: to poproszę. Potwierdzam zamowienie
|
# text: to poproszę. Potwierdzam zamowienie
|
||||||
# intent: inform/order-complete
|
# intent: inform/order-complete
|
||||||
@ -319,10 +319,10 @@
|
|||||||
7 ale inform/order NoLabel
|
7 ale inform/order NoLabel
|
||||||
8 żeby inform/order NoLabel
|
8 żeby inform/order NoLabel
|
||||||
9 była inform/order NoLabel
|
9 była inform/order NoLabel
|
||||||
10 zimna inform/order B-temp
|
10 zimna inform/order NoLabel
|
||||||
11 i inform/order NoLabel
|
11 i inform/order NoLabel
|
||||||
12 bez inform/order B-sugar/neg
|
12 bez inform/order NoLabel
|
||||||
13 cukru inform/order I-sugar/neg
|
13 cukru inform/order NoLabel
|
||||||
|
|
||||||
# text: ulica niebieska 230/2
|
# text: ulica niebieska 230/2
|
||||||
# intent: inform/address
|
# intent: inform/address
|
||||||
@ -405,7 +405,7 @@
|
|||||||
4 dostępne request/menu NoLabel
|
4 dostępne request/menu NoLabel
|
||||||
5 pizze? request/menu B-food
|
5 pizze? request/menu B-food
|
||||||
|
|
||||||
# text: świetnie, w takim razie poproszę dwie duże pizze diavola oraz margaritę
|
# text: świetnie, w takim razie poproszę trzy duże pizze diavola oraz margaritę
|
||||||
# intent: inform/order
|
# intent: inform/order
|
||||||
# slots:
|
# slots:
|
||||||
1 świetnie, inform/order NoLabel
|
1 świetnie, inform/order NoLabel
|
||||||
@ -413,7 +413,7 @@
|
|||||||
3 takim inform/order NoLabel
|
3 takim inform/order NoLabel
|
||||||
4 razie inform/order NoLabel
|
4 razie inform/order NoLabel
|
||||||
5 poproszę inform/order NoLabel
|
5 poproszę inform/order NoLabel
|
||||||
6 dwie inform/order B-quantity
|
6 trzy inform/order B-quantity
|
||||||
7 duże inform/order B-size
|
7 duże inform/order B-size
|
||||||
8 pizze inform/order B-food
|
8 pizze inform/order B-food
|
||||||
9 diavola inform/order B-pizza
|
9 diavola inform/order B-pizza
|
||||||
@ -428,12 +428,12 @@
|
|||||||
3 jeden affirm B-quantity
|
3 jeden affirm B-quantity
|
||||||
|
|
||||||
# text: ze Szczebrzeszyna, powiat Łękołody
|
# text: ze Szczebrzeszyna, powiat Łękołody
|
||||||
# intent: inform/name
|
# intent: inform/address
|
||||||
# slots:
|
# slots:
|
||||||
1 ze inform/name NoLabel
|
1 ze inform/address NoLabel
|
||||||
2 Szczebrzeszyna, inform/name B-address
|
2 Szczebrzeszyna, inform/address B-address
|
||||||
3 powiat inform/name I-address
|
3 powiat inform/address I-address
|
||||||
4 Łękołody inform/name I-address
|
4 Łękołody inform/address I-address
|
||||||
|
|
||||||
# text: Grzegorz Brzęczyszczykiewicz
|
# text: Grzegorz Brzęczyszczykiewicz
|
||||||
# intent: inform/name
|
# intent: inform/name
|
||||||
@ -508,7 +508,7 @@
|
|||||||
# slots:
|
# slots:
|
||||||
1 Poproszę inform/order NoLabel
|
1 Poproszę inform/order NoLabel
|
||||||
2 wersję inform/order NoLabel
|
2 wersję inform/order NoLabel
|
||||||
3 klasyczną inform/order B-type
|
3 klasyczną inform/order NoLabel
|
||||||
4 średnią inform/order B-size
|
4 średnią inform/order B-size
|
||||||
|
|
||||||
# text: Ile będzie ona kosztować?
|
# text: Ile będzie ona kosztować?
|
||||||
@ -566,8 +566,8 @@
|
|||||||
2 colę inform/order B-drink
|
2 colę inform/order B-drink
|
||||||
3 poproszę, inform/order NoLabel
|
3 poproszę, inform/order NoLabel
|
||||||
4 jednakże inform/order NoLabel
|
4 jednakże inform/order NoLabel
|
||||||
5 bez inform/order B-option
|
5 bez inform/order NoLabel
|
||||||
6 cukru inform/order I-option
|
6 cukru inform/order NoLabel
|
||||||
|
|
||||||
# text: Płatność będzie kartą.
|
# text: Płatność będzie kartą.
|
||||||
# intent: inform/payment
|
# intent: inform/payment
|
||||||
|
@ -332,11 +332,11 @@
|
|||||||
3 w request/menu NoLabel
|
3 w request/menu NoLabel
|
||||||
4 ofercie request/menu NoLabel
|
4 ofercie request/menu NoLabel
|
||||||
|
|
||||||
# text: chciałbym 3 pizze, hawajskie duże
|
# text: chciałbym trzy pizze, hawajskie duże
|
||||||
# intent: inform/order
|
# intent: inform/order
|
||||||
# slots:
|
# slots:
|
||||||
1 chciałbym inform/order NoLabel
|
1 chciałbym inform/order NoLabel
|
||||||
2 3 inform/order B-quantity
|
2 trzy inform/order B-quantity
|
||||||
3 pizze, inform/order B-food
|
3 pizze, inform/order B-food
|
||||||
4 hawajskie inform/order B-pizza
|
4 hawajskie inform/order B-pizza
|
||||||
5 duże inform/order B-size
|
5 duże inform/order B-size
|
||||||
@ -585,11 +585,11 @@
|
|||||||
4 tuna inform/order B-pizza
|
4 tuna inform/order B-pizza
|
||||||
5 XL inform/order B-size
|
5 XL inform/order B-size
|
||||||
|
|
||||||
# text: wezmę 3 pizze tuna, średnią, dużą i bardzo dużą
|
# text: wezmę 3x pizze tuna, średnią, dużą i bardzo dużą
|
||||||
# intent: inform/order
|
# intent: inform/order
|
||||||
# slots:
|
# slots:
|
||||||
1 wezmę inform/order NoLabel
|
1 wezmę inform/order NoLabel
|
||||||
2 3 inform/order B-quantity
|
2 3x inform/order B-quantity
|
||||||
3 pizze inform/order B-food
|
3 pizze inform/order B-food
|
||||||
4 tuna, inform/order B-pizza
|
4 tuna, inform/order B-pizza
|
||||||
5 średnią, inform/order B-size
|
5 średnią, inform/order B-size
|
||||||
@ -825,6 +825,14 @@
|
|||||||
1 jakie request/ingredients NoLabel
|
1 jakie request/ingredients NoLabel
|
||||||
2 składniki request/ingredients NoLabel
|
2 składniki request/ingredients NoLabel
|
||||||
|
|
||||||
|
# text: co jest na pizzy
|
||||||
|
# intent: request/ingredients
|
||||||
|
# slots:
|
||||||
|
1 co request/ingredients NoLabel
|
||||||
|
2 jest request/ingredients NoLabel
|
||||||
|
3 na request/ingredients NoLabel
|
||||||
|
4 pizzy request/ingredients NoLabel
|
||||||
|
|
||||||
# text: jakie są napoje
|
# text: jakie są napoje
|
||||||
# intent: request/drinks
|
# intent: request/drinks
|
||||||
# slots:
|
# slots:
|
||||||
@ -850,3 +858,54 @@
|
|||||||
2 macie request/drinks NoLabel
|
2 macie request/drinks NoLabel
|
||||||
3 do request/drinks NoLabel
|
3 do request/drinks NoLabel
|
||||||
4 picia request/drinks NoLabel
|
4 picia request/drinks NoLabel
|
||||||
|
|
||||||
|
# text: czy są dostępne jakieś sosy?
|
||||||
|
# intent: request/sauce
|
||||||
|
# slots:
|
||||||
|
1 czy request/sauce NoLabel
|
||||||
|
2 są request/sauce NoLabel
|
||||||
|
3 dostępne request/sauce NoLabel
|
||||||
|
4 jakieś request/sauce NoLabel
|
||||||
|
5 sosy? request/sauce NoLabel
|
||||||
|
|
||||||
|
# text: Grzegorz Pieczarski
|
||||||
|
# intent: inform/name
|
||||||
|
# slots:
|
||||||
|
1 Grzegorz inform/name B-name
|
||||||
|
2 Pieczarski inform/name I-name
|
||||||
|
|
||||||
|
# text: Sergiusz Kaczmarek
|
||||||
|
# intent: inform/name
|
||||||
|
# slots:
|
||||||
|
1 Sergiusz inform/name B-name
|
||||||
|
2 Kaczmarek inform/name I-name
|
||||||
|
|
||||||
|
# text: jaki koszt dowozu
|
||||||
|
# intent: request/delivery-price
|
||||||
|
# slots:
|
||||||
|
1 jaki request/delivery-price NoLabel
|
||||||
|
2 koszt request/delivery-price NoLabel
|
||||||
|
3 dowozu request/delivery-price NoLabel
|
||||||
|
|
||||||
|
# text: jakie sosy w menu?
|
||||||
|
# intent: request/sauce
|
||||||
|
# slots:
|
||||||
|
1 jakie request/sauce NoLabel
|
||||||
|
2 sosy request/sauce NoLabel
|
||||||
|
3 w request/sauce NoLabel
|
||||||
|
4 menu? request/sauce NoLabel
|
||||||
|
|
||||||
|
# text: Napój pepsi i cola
|
||||||
|
# intent: inform/order
|
||||||
|
# slots:
|
||||||
|
1 Napój inform/order NoLabel
|
||||||
|
2 pepsi inform/order B-drink
|
||||||
|
3 i inform/order NoLabel
|
||||||
|
4 cola inform/order B-drink
|
||||||
|
|
||||||
|
# text: woda i sok
|
||||||
|
# intent: inform/order
|
||||||
|
# slots:
|
||||||
|
1 woda inform/order B-drink
|
||||||
|
2 i inform/order NoLabel
|
||||||
|
3 sok inform/order B-drink
|
28
evaluate.py
28
evaluate.py
@ -4,7 +4,30 @@ import pandas as pd
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from nlu_utils import predict_multiple
|
from nlu_utils import predict_multiple
|
||||||
from flair.models import SequenceTagger
|
from flair.models import SequenceTagger
|
||||||
|
from conllu import parse_incr
|
||||||
|
from flair.data import Corpus
|
||||||
|
from nlu_utils import conllu2flair, nolabel2o
|
||||||
|
|
||||||
|
# Frame model evaluation
|
||||||
|
frame_model = SequenceTagger.load('frame-model-prod/best-model.pt')
|
||||||
|
with open('data/test_dialog_46.conllu', encoding='utf-8') as trainfile:
|
||||||
|
testset = list(parse_incr(trainfile, fields=['id', 'form', 'frame', 'slot'], field_parsers={}))
|
||||||
|
|
||||||
|
corpus = Corpus(test=conllu2flair(testset, "frame"))
|
||||||
|
result = frame_model.evaluate(corpus.test, mini_batch_size=1, gold_label_type="frame")
|
||||||
|
print(result.detailed_results)
|
||||||
|
|
||||||
|
# Slot model evaluation
|
||||||
|
slot_model = SequenceTagger.load('slot-model-prod/best-model.pt')
|
||||||
|
|
||||||
|
with open('data/test_dialog_46.conllu', encoding='utf-8') as trainfile:
|
||||||
|
testset = list(parse_incr(trainfile, fields=['id', 'form', 'frame', 'slot'], field_parsers={'slot': nolabel2o}))
|
||||||
|
|
||||||
|
corpus = Corpus(test=conllu2flair(testset, "slot"))
|
||||||
|
result = slot_model.evaluate(corpus.test, mini_batch_size=8, gold_label_type="slot")
|
||||||
|
print(result.detailed_results)
|
||||||
|
|
||||||
|
# Custom evaluation
|
||||||
def __parse_acts(acts):
|
def __parse_acts(acts):
|
||||||
acts_split = acts.split('&')
|
acts_split = acts.split('&')
|
||||||
remove_slot_regex = "[\(\[].*?[\)\]]"
|
remove_slot_regex = "[\(\[].*?[\)\]]"
|
||||||
@ -13,10 +36,6 @@ def __parse_acts(acts):
|
|||||||
def __parse_predictions(predictions):
|
def __parse_predictions(predictions):
|
||||||
return set(prediction.split('/')[0] for prediction in predictions)
|
return set(prediction.split('/')[0] for prediction in predictions)
|
||||||
|
|
||||||
# Exploratory tests
|
|
||||||
frame_model = SequenceTagger.load('frame-model-prod/best-model.pt')
|
|
||||||
# slot_model = SequenceTagger.load('slot-model-prod/final-model.pt')
|
|
||||||
|
|
||||||
total_acts = 0
|
total_acts = 0
|
||||||
act_correct_predictions = 0
|
act_correct_predictions = 0
|
||||||
slot_correct_predictions = 0
|
slot_correct_predictions = 0
|
||||||
@ -41,5 +60,4 @@ for file_name in os.listdir('data'):
|
|||||||
if act in predictions:
|
if act in predictions:
|
||||||
act_correct_predictions += 1
|
act_correct_predictions += 1
|
||||||
|
|
||||||
|
|
||||||
print(f"Accuracy - predicting acts: {(act_correct_predictions / total_acts)*100} ({act_correct_predictions}/{total_acts})")
|
print(f"Accuracy - predicting acts: {(act_correct_predictions / total_acts)*100} ({act_correct_predictions}/{total_acts})")
|
20
nlu_train.py
20
nlu_train.py
@ -8,24 +8,20 @@ from flair.models import SequenceTagger
|
|||||||
from flair.trainers import ModelTrainer
|
from flair.trainers import ModelTrainer
|
||||||
from nlu_utils import conllu2flair, nolabel2o
|
from nlu_utils import conllu2flair, nolabel2o
|
||||||
|
|
||||||
import random
|
|
||||||
import torch
|
import torch
|
||||||
random.seed(42)
|
|
||||||
torch.manual_seed(42)
|
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
torch.cuda.manual_seed(0)
|
|
||||||
torch.cuda.manual_seed_all(0)
|
|
||||||
torch.backends.cudnn.enabled = False
|
torch.backends.cudnn.enabled = False
|
||||||
torch.backends.cudnn.benchmark = False
|
torch.backends.cudnn.benchmark = False
|
||||||
torch.backends.cudnn.deterministic = True
|
torch.backends.cudnn.deterministic = True
|
||||||
|
|
||||||
|
|
||||||
def train_model(label_type, field_parsers = {}):
|
def train_model(label_type, field_parsers = {}):
|
||||||
with open('data/train_dialog.conllu', encoding='utf-8') as trainfile:
|
with open('data/train_dialog.conllu', encoding='utf-8') as f:
|
||||||
trainset = list(parse_incr(trainfile, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers))
|
trainset = list(parse_incr(f, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers))
|
||||||
|
with open('data/test_dialog_46.conllu', encoding='utf-8') as f:
|
||||||
|
testset = list(parse_incr(f, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers))
|
||||||
|
|
||||||
corpus = Corpus(train=conllu2flair(trainset, label_type), test=conllu2flair(trainset, label_type))
|
breakpoint()
|
||||||
|
corpus = Corpus(train=conllu2flair(trainset, label_type), test=conllu2flair(testset, label_type))
|
||||||
label_dictionary = corpus.make_label_dictionary(label_type=label_type)
|
label_dictionary = corpus.make_label_dictionary(label_type=label_type)
|
||||||
|
|
||||||
embedding_types = [
|
embedding_types = [
|
||||||
@ -39,8 +35,8 @@ def train_model(label_type, field_parsers = {}):
|
|||||||
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=label_dictionary, tag_type=label_type, use_crf=True, tag_format="BIO")
|
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=label_dictionary, tag_type=label_type, use_crf=True, tag_format="BIO")
|
||||||
|
|
||||||
frame_trainer = ModelTrainer(tagger, corpus)
|
frame_trainer = ModelTrainer(tagger, corpus)
|
||||||
frame_trainer.train(f'{label_type}-model', learning_rate=0.1, mini_batch_size=32, max_epochs=75, train_with_dev=False)
|
frame_trainer.train(f'{label_type}-model', learning_rate=0.1, mini_batch_size=16, max_epochs=75, train_with_dev=False)
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
train_model("frame")
|
train_model("frame")
|
||||||
train_model('slot', field_parsers={'slot': nolabel2o})
|
# train_model('slot', field_parsers={'slot': nolabel2o})
|
@ -25,7 +25,6 @@ def conllu2flair_frame(sentences, label=None):
|
|||||||
|
|
||||||
def conllu2flair_slot(sentences, label=None):
|
def conllu2flair_slot(sentences, label=None):
|
||||||
fsentences = []
|
fsentences = []
|
||||||
|
|
||||||
for sentence in sentences:
|
for sentence in sentences:
|
||||||
fsentence = Sentence(' '.join(token['form'] for token in sentence), use_tokenizer=False)
|
fsentence = Sentence(' '.join(token['form'] for token in sentence), use_tokenizer=False)
|
||||||
start_idx = None
|
start_idx = None
|
||||||
@ -35,6 +34,8 @@ def conllu2flair_slot(sentences, label=None):
|
|||||||
if label:
|
if label:
|
||||||
for idx, (token, ftoken) in enumerate(zip(sentence, fsentence)):
|
for idx, (token, ftoken) in enumerate(zip(sentence, fsentence)):
|
||||||
if token[label].startswith('B-'):
|
if token[label].startswith('B-'):
|
||||||
|
if start_idx is not None:
|
||||||
|
fsentence[start_idx:end_idx+1].add_label(label, tag)
|
||||||
start_idx = idx
|
start_idx = idx
|
||||||
end_idx = idx
|
end_idx = idx
|
||||||
tag = token[label][2:]
|
tag = token[label][2:]
|
||||||
|
Loading…
Reference in New Issue
Block a user