Finalne poprawki
This commit is contained in:
parent
846c6991e7
commit
16af0e732c
@ -191,11 +191,11 @@
|
||||
6 napoje? request/drinks NoLabel
|
||||
|
||||
# text: jaka cena coli?
|
||||
# intent: request(price)
|
||||
# intent: request/price
|
||||
# slots:
|
||||
1 jaka request(price) NoLabel
|
||||
2 cena request(price) NoLabel
|
||||
3 coli? request(price) B-drink
|
||||
1 jaka request/price NoLabel
|
||||
2 cena request/price NoLabel
|
||||
3 coli? request/price B-drink
|
||||
|
||||
# text: to poproszę. Potwierdzam zamowienie
|
||||
# intent: inform/order-complete
|
||||
@ -319,10 +319,10 @@
|
||||
7 ale inform/order NoLabel
|
||||
8 żeby inform/order NoLabel
|
||||
9 była inform/order NoLabel
|
||||
10 zimna inform/order B-temp
|
||||
10 zimna inform/order NoLabel
|
||||
11 i inform/order NoLabel
|
||||
12 bez inform/order B-sugar/neg
|
||||
13 cukru inform/order I-sugar/neg
|
||||
12 bez inform/order NoLabel
|
||||
13 cukru inform/order NoLabel
|
||||
|
||||
# text: ulica niebieska 230/2
|
||||
# intent: inform/address
|
||||
@ -405,7 +405,7 @@
|
||||
4 dostępne request/menu NoLabel
|
||||
5 pizze? request/menu B-food
|
||||
|
||||
# text: świetnie, w takim razie poproszę dwie duże pizze diavola oraz margaritę
|
||||
# text: świetnie, w takim razie poproszę trzy duże pizze diavola oraz margaritę
|
||||
# intent: inform/order
|
||||
# slots:
|
||||
1 świetnie, inform/order NoLabel
|
||||
@ -413,7 +413,7 @@
|
||||
3 takim inform/order NoLabel
|
||||
4 razie inform/order NoLabel
|
||||
5 poproszę inform/order NoLabel
|
||||
6 dwie inform/order B-quantity
|
||||
6 trzy inform/order B-quantity
|
||||
7 duże inform/order B-size
|
||||
8 pizze inform/order B-food
|
||||
9 diavola inform/order B-pizza
|
||||
@ -428,12 +428,12 @@
|
||||
3 jeden affirm B-quantity
|
||||
|
||||
# text: ze Szczebrzeszyna, powiat Łękołody
|
||||
# intent: inform/name
|
||||
# intent: inform/address
|
||||
# slots:
|
||||
1 ze inform/name NoLabel
|
||||
2 Szczebrzeszyna, inform/name B-address
|
||||
3 powiat inform/name I-address
|
||||
4 Łękołody inform/name I-address
|
||||
1 ze inform/address NoLabel
|
||||
2 Szczebrzeszyna, inform/address B-address
|
||||
3 powiat inform/address I-address
|
||||
4 Łękołody inform/address I-address
|
||||
|
||||
# text: Grzegorz Brzęczyszczykiewicz
|
||||
# intent: inform/name
|
||||
@ -508,7 +508,7 @@
|
||||
# slots:
|
||||
1 Poproszę inform/order NoLabel
|
||||
2 wersję inform/order NoLabel
|
||||
3 klasyczną inform/order B-type
|
||||
3 klasyczną inform/order NoLabel
|
||||
4 średnią inform/order B-size
|
||||
|
||||
# text: Ile będzie ona kosztować?
|
||||
@ -566,8 +566,8 @@
|
||||
2 colę inform/order B-drink
|
||||
3 poproszę, inform/order NoLabel
|
||||
4 jednakże inform/order NoLabel
|
||||
5 bez inform/order B-option
|
||||
6 cukru inform/order I-option
|
||||
5 bez inform/order NoLabel
|
||||
6 cukru inform/order NoLabel
|
||||
|
||||
# text: Płatność będzie kartą.
|
||||
# intent: inform/payment
|
||||
|
@ -332,11 +332,11 @@
|
||||
3 w request/menu NoLabel
|
||||
4 ofercie request/menu NoLabel
|
||||
|
||||
# text: chciałbym 3 pizze, hawajskie duże
|
||||
# text: chciałbym trzy pizze, hawajskie duże
|
||||
# intent: inform/order
|
||||
# slots:
|
||||
1 chciałbym inform/order NoLabel
|
||||
2 3 inform/order B-quantity
|
||||
2 trzy inform/order B-quantity
|
||||
3 pizze, inform/order B-food
|
||||
4 hawajskie inform/order B-pizza
|
||||
5 duże inform/order B-size
|
||||
@ -585,11 +585,11 @@
|
||||
4 tuna inform/order B-pizza
|
||||
5 XL inform/order B-size
|
||||
|
||||
# text: wezmę 3 pizze tuna, średnią, dużą i bardzo dużą
|
||||
# text: wezmę 3x pizze tuna, średnią, dużą i bardzo dużą
|
||||
# intent: inform/order
|
||||
# slots:
|
||||
1 wezmę inform/order NoLabel
|
||||
2 3 inform/order B-quantity
|
||||
2 3x inform/order B-quantity
|
||||
3 pizze inform/order B-food
|
||||
4 tuna, inform/order B-pizza
|
||||
5 średnią, inform/order B-size
|
||||
@ -825,6 +825,14 @@
|
||||
1 jakie request/ingredients NoLabel
|
||||
2 składniki request/ingredients NoLabel
|
||||
|
||||
# text: co jest na pizzy
|
||||
# intent: request/ingredients
|
||||
# slots:
|
||||
1 co request/ingredients NoLabel
|
||||
2 jest request/ingredients NoLabel
|
||||
3 na request/ingredients NoLabel
|
||||
4 pizzy request/ingredients NoLabel
|
||||
|
||||
# text: jakie są napoje
|
||||
# intent: request/drinks
|
||||
# slots:
|
||||
@ -850,3 +858,54 @@
|
||||
2 macie request/drinks NoLabel
|
||||
3 do request/drinks NoLabel
|
||||
4 picia request/drinks NoLabel
|
||||
|
||||
# text: czy są dostępne jakieś sosy?
|
||||
# intent: request/sauce
|
||||
# slots:
|
||||
1 czy request/sauce NoLabel
|
||||
2 są request/sauce NoLabel
|
||||
3 dostępne request/sauce NoLabel
|
||||
4 jakieś request/sauce NoLabel
|
||||
5 sosy? request/sauce NoLabel
|
||||
|
||||
# text: Grzegorz Pieczarski
|
||||
# intent: inform/name
|
||||
# slots:
|
||||
1 Grzegorz inform/name B-name
|
||||
2 Pieczarski inform/name I-name
|
||||
|
||||
# text: Sergiusz Kaczmarek
|
||||
# intent: inform/name
|
||||
# slots:
|
||||
1 Sergiusz inform/name B-name
|
||||
2 Kaczmarek inform/name I-name
|
||||
|
||||
# text: jaki koszt dowozu
|
||||
# intent: request/delivery-price
|
||||
# slots:
|
||||
1 jaki request/delivery-price NoLabel
|
||||
2 koszt request/delivery-price NoLabel
|
||||
3 dowozu request/delivery-price NoLabel
|
||||
|
||||
# text: jakie sosy w menu?
|
||||
# intent: request/sauce
|
||||
# slots:
|
||||
1 jakie request/sauce NoLabel
|
||||
2 sosy request/sauce NoLabel
|
||||
3 w request/sauce NoLabel
|
||||
4 menu? request/sauce NoLabel
|
||||
|
||||
# text: Napój pepsi i cola
|
||||
# intent: inform/order
|
||||
# slots:
|
||||
1 Napój inform/order NoLabel
|
||||
2 pepsi inform/order B-drink
|
||||
3 i inform/order NoLabel
|
||||
4 cola inform/order B-drink
|
||||
|
||||
# text: woda i sok
|
||||
# intent: inform/order
|
||||
# slots:
|
||||
1 woda inform/order B-drink
|
||||
2 i inform/order NoLabel
|
||||
3 sok inform/order B-drink
|
28
evaluate.py
28
evaluate.py
@ -4,7 +4,30 @@ import pandas as pd
|
||||
import numpy as np
|
||||
from nlu_utils import predict_multiple
|
||||
from flair.models import SequenceTagger
|
||||
from conllu import parse_incr
|
||||
from flair.data import Corpus
|
||||
from nlu_utils import conllu2flair, nolabel2o
|
||||
|
||||
# Frame model evaluation
|
||||
frame_model = SequenceTagger.load('frame-model-prod/best-model.pt')
|
||||
with open('data/test_dialog_46.conllu', encoding='utf-8') as trainfile:
|
||||
testset = list(parse_incr(trainfile, fields=['id', 'form', 'frame', 'slot'], field_parsers={}))
|
||||
|
||||
corpus = Corpus(test=conllu2flair(testset, "frame"))
|
||||
result = frame_model.evaluate(corpus.test, mini_batch_size=1, gold_label_type="frame")
|
||||
print(result.detailed_results)
|
||||
|
||||
# Slot model evaluation
|
||||
slot_model = SequenceTagger.load('slot-model-prod/best-model.pt')
|
||||
|
||||
with open('data/test_dialog_46.conllu', encoding='utf-8') as trainfile:
|
||||
testset = list(parse_incr(trainfile, fields=['id', 'form', 'frame', 'slot'], field_parsers={'slot': nolabel2o}))
|
||||
|
||||
corpus = Corpus(test=conllu2flair(testset, "slot"))
|
||||
result = slot_model.evaluate(corpus.test, mini_batch_size=8, gold_label_type="slot")
|
||||
print(result.detailed_results)
|
||||
|
||||
# Custom evaluation
|
||||
def __parse_acts(acts):
|
||||
acts_split = acts.split('&')
|
||||
remove_slot_regex = "[\(\[].*?[\)\]]"
|
||||
@ -13,10 +36,6 @@ def __parse_acts(acts):
|
||||
def __parse_predictions(predictions):
|
||||
return set(prediction.split('/')[0] for prediction in predictions)
|
||||
|
||||
# Exploratory tests
|
||||
frame_model = SequenceTagger.load('frame-model-prod/best-model.pt')
|
||||
# slot_model = SequenceTagger.load('slot-model-prod/final-model.pt')
|
||||
|
||||
total_acts = 0
|
||||
act_correct_predictions = 0
|
||||
slot_correct_predictions = 0
|
||||
@ -41,5 +60,4 @@ for file_name in os.listdir('data'):
|
||||
if act in predictions:
|
||||
act_correct_predictions += 1
|
||||
|
||||
|
||||
print(f"Accuracy - predicting acts: {(act_correct_predictions / total_acts)*100} ({act_correct_predictions}/{total_acts})")
|
20
nlu_train.py
20
nlu_train.py
@ -8,24 +8,20 @@ from flair.models import SequenceTagger
|
||||
from flair.trainers import ModelTrainer
|
||||
from nlu_utils import conllu2flair, nolabel2o
|
||||
|
||||
import random
|
||||
import torch
|
||||
random.seed(42)
|
||||
torch.manual_seed(42)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.manual_seed(0)
|
||||
torch.cuda.manual_seed_all(0)
|
||||
torch.backends.cudnn.enabled = False
|
||||
torch.backends.cudnn.benchmark = False
|
||||
torch.backends.cudnn.deterministic = True
|
||||
|
||||
|
||||
def train_model(label_type, field_parsers = {}):
|
||||
with open('data/train_dialog.conllu', encoding='utf-8') as trainfile:
|
||||
trainset = list(parse_incr(trainfile, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers))
|
||||
with open('data/train_dialog.conllu', encoding='utf-8') as f:
|
||||
trainset = list(parse_incr(f, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers))
|
||||
with open('data/test_dialog_46.conllu', encoding='utf-8') as f:
|
||||
testset = list(parse_incr(f, fields=['id', 'form', 'frame', 'slot'], field_parsers=field_parsers))
|
||||
|
||||
corpus = Corpus(train=conllu2flair(trainset, label_type), test=conllu2flair(trainset, label_type))
|
||||
breakpoint()
|
||||
corpus = Corpus(train=conllu2flair(trainset, label_type), test=conllu2flair(testset, label_type))
|
||||
label_dictionary = corpus.make_label_dictionary(label_type=label_type)
|
||||
|
||||
embedding_types = [
|
||||
@ -39,8 +35,8 @@ def train_model(label_type, field_parsers = {}):
|
||||
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=label_dictionary, tag_type=label_type, use_crf=True, tag_format="BIO")
|
||||
|
||||
frame_trainer = ModelTrainer(tagger, corpus)
|
||||
frame_trainer.train(f'{label_type}-model', learning_rate=0.1, mini_batch_size=32, max_epochs=75, train_with_dev=False)
|
||||
frame_trainer.train(f'{label_type}-model', learning_rate=0.1, mini_batch_size=16, max_epochs=75, train_with_dev=False)
|
||||
|
||||
if __name__ == '__main__':
|
||||
train_model("frame")
|
||||
train_model('slot', field_parsers={'slot': nolabel2o})
|
||||
# train_model('slot', field_parsers={'slot': nolabel2o})
|
@ -25,7 +25,6 @@ def conllu2flair_frame(sentences, label=None):
|
||||
|
||||
def conllu2flair_slot(sentences, label=None):
|
||||
fsentences = []
|
||||
|
||||
for sentence in sentences:
|
||||
fsentence = Sentence(' '.join(token['form'] for token in sentence), use_tokenizer=False)
|
||||
start_idx = None
|
||||
@ -35,6 +34,8 @@ def conllu2flair_slot(sentences, label=None):
|
||||
if label:
|
||||
for idx, (token, ftoken) in enumerate(zip(sentence, fsentence)):
|
||||
if token[label].startswith('B-'):
|
||||
if start_idx is not None:
|
||||
fsentence[start_idx:end_idx+1].add_label(label, tag)
|
||||
start_idx = idx
|
||||
end_idx = idx
|
||||
tag = token[label][2:]
|
||||
|
Loading…
Reference in New Issue
Block a user