Draft: dialog_policy #1
@ -2,5 +2,5 @@ flair==0.13.1
|
||||
conllu==4.5.3
|
||||
pandas==1.5.3
|
||||
numpy==1.26.4
|
||||
torch==2.3.0
|
||||
torch==1.13
|
||||
convlab==3.0.2a0
|
4
src/service/data/restaurant/db/confirm_db.json
Normal file
4
src/service/data/restaurant/db/confirm_db.json
Normal file
@ -0,0 +1,4 @@
|
||||
[
|
||||
"true",
|
||||
"false"
|
||||
]
|
5
src/service/data/restaurant/db/dough_db.json
Normal file
5
src/service/data/restaurant/db/dough_db.json
Normal file
@ -0,0 +1,5 @@
|
||||
[
|
||||
"pepsi",
|
||||
"cola",
|
||||
"water"
|
||||
]
|
11
src/service/data/restaurant/db/drink_db.json
Normal file
11
src/service/data/restaurant/db/drink_db.json
Normal file
@ -0,0 +1,11 @@
|
||||
[
|
||||
{
|
||||
"name":"pepsi"
|
||||
},
|
||||
{
|
||||
"name":"cola"
|
||||
},
|
||||
{
|
||||
"name":"water"
|
||||
}
|
||||
]
|
3
src/service/data/restaurant/db/food_db.json
Normal file
3
src/service/data/restaurant/db/food_db.json
Normal file
@ -0,0 +1,3 @@
|
||||
[
|
||||
"pizza"
|
||||
]
|
5
src/service/data/restaurant/db/meat_db.json
Normal file
5
src/service/data/restaurant/db/meat_db.json
Normal file
@ -0,0 +1,5 @@
|
||||
[
|
||||
"chicken",
|
||||
"ham",
|
||||
"tuna"
|
||||
]
|
7
src/service/data/restaurant/db/menu_db.json
Normal file
7
src/service/data/restaurant/db/menu_db.json
Normal file
@ -0,0 +1,7 @@
|
||||
[
|
||||
"capri",
|
||||
"margarita",
|
||||
"hawajska",
|
||||
"barcelona",
|
||||
"tuna"
|
||||
]
|
51
src/service/data/restaurant/db/pizza_db.json
Normal file
51
src/service/data/restaurant/db/pizza_db.json
Normal file
@ -0,0 +1,51 @@
|
||||
[
|
||||
{
|
||||
"name": "capri",
|
||||
"ingredient": [
|
||||
"tomato",
|
||||
"ham",
|
||||
"mushrooms",
|
||||
"cheese"
|
||||
],
|
||||
"price": 25
|
||||
},
|
||||
{
|
||||
"name": "margarita",
|
||||
"ingredient": [
|
||||
"tomato",
|
||||
"cheese"
|
||||
],
|
||||
"price": 20
|
||||
},
|
||||
{
|
||||
"name": "hawajska",
|
||||
"ingredient": [
|
||||
"tomato",
|
||||
"pineapple",
|
||||
"chicken",
|
||||
"cheese"
|
||||
],
|
||||
"price": 30
|
||||
},
|
||||
{
|
||||
"name": "barcelona",
|
||||
"ingredient": [
|
||||
"tomato",
|
||||
"onion",
|
||||
"ham",
|
||||
"pepper",
|
||||
"cheese"
|
||||
],
|
||||
"price": 40
|
||||
},
|
||||
{
|
||||
"name": "tuna",
|
||||
"ingredient": [
|
||||
"tomato",
|
||||
"tuna",
|
||||
"onion",
|
||||
"cheese"
|
||||
],
|
||||
"price": 40
|
||||
}
|
||||
]
|
4
src/service/data/restaurant/db/sauce_db.json
Normal file
4
src/service/data/restaurant/db/sauce_db.json
Normal file
@ -0,0 +1,4 @@
|
||||
[
|
||||
"garlic",
|
||||
"1000w"
|
||||
]
|
14
src/service/data/restaurant/db/size_db.json
Normal file
14
src/service/data/restaurant/db/size_db.json
Normal file
@ -0,0 +1,14 @@
|
||||
[
|
||||
{
|
||||
"size": "m",
|
||||
"price_multiplier": 1
|
||||
},
|
||||
{
|
||||
"size": "l",
|
||||
"price_multiplier": 1.2
|
||||
},
|
||||
{
|
||||
"size": "xl",
|
||||
"price_multiplier": 1.4
|
||||
}
|
||||
]
|
91
src/service/dbquery.py
Normal file
91
src/service/dbquery.py
Normal file
@ -0,0 +1,91 @@
|
||||
"""
|
||||
"""
|
||||
import json
|
||||
import os
|
||||
import random
|
||||
from fuzzywuzzy import fuzz
|
||||
from itertools import chain
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
class Database(object):
|
||||
def __init__(self):
|
||||
super(Database, self).__init__()
|
||||
# loading databases
|
||||
domains = ['restaurant', 'hotel', 'attraction', 'train', 'hospital', 'taxi', 'police']
|
||||
self.dbs = {}
|
||||
for domain in domains:
|
||||
with open(os.path.join(os.path.dirname(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))),
|
||||
'data/restaurant/db/{}_db.json'.format(domain))) as f:
|
||||
self.dbs[domain] = json.load(f)
|
||||
|
||||
def query(self, domain, constraints, ignore_open=False, soft_contraints=(), fuzzy_match_ratio=60):
|
||||
"""Returns the list of entities for a given domain
|
||||
based on the annotation of the belief state"""
|
||||
# query the db
|
||||
if domain == 'taxi':
|
||||
return [{'taxi_colors': random.choice(self.dbs[domain]['taxi_colors']),
|
||||
'taxi_types': random.choice(self.dbs[domain]['taxi_types']),
|
||||
'taxi_phone': ''.join([str(random.randint(1, 9)) for _ in range(11)])}]
|
||||
if domain == 'police':
|
||||
return deepcopy(self.dbs['police'])
|
||||
if domain == 'hospital':
|
||||
department = None
|
||||
for key, val in constraints:
|
||||
if key == 'department':
|
||||
department = val
|
||||
if not department:
|
||||
return deepcopy(self.dbs['hospital'])
|
||||
else:
|
||||
return [deepcopy(x) for x in self.dbs['hospital'] if x['department'].lower() == department.strip().lower()]
|
||||
constraints = list(map(lambda ele: ele if not(ele[0] == 'area' and ele[1] == 'center') else ('area', 'centre'), constraints))
|
||||
|
||||
found = []
|
||||
for i, record in enumerate(self.dbs[domain]):
|
||||
constraints_iterator = zip(constraints, [False] * len(constraints))
|
||||
soft_contraints_iterator = zip(soft_contraints, [True] * len(soft_contraints))
|
||||
for (key, val), fuzzy_match in chain(constraints_iterator, soft_contraints_iterator):
|
||||
if val == "" or val == "dont care" or val == 'not mentioned' or val == "don't care" or val == "dontcare" or val == "do n't care":
|
||||
pass
|
||||
else:
|
||||
try:
|
||||
record_keys = [k.lower() for k in record]
|
||||
if key.lower() not in record_keys:
|
||||
continue
|
||||
if key == 'leaveAt':
|
||||
val1 = int(val.split(':')[0]) * 100 + int(val.split(':')[1])
|
||||
val2 = int(record['leaveAt'].split(':')[0]) * 100 + int(record['leaveAt'].split(':')[1])
|
||||
if val1 > val2:
|
||||
break
|
||||
elif key == 'arriveBy':
|
||||
val1 = int(val.split(':')[0]) * 100 + int(val.split(':')[1])
|
||||
val2 = int(record['arriveBy'].split(':')[0]) * 100 + int(record['arriveBy'].split(':')[1])
|
||||
if val1 < val2:
|
||||
break
|
||||
# elif ignore_open and key in ['destination', 'departure', 'name']:
|
||||
elif ignore_open and key in ['destination', 'departure']:
|
||||
continue
|
||||
elif record[key].strip() == '?':
|
||||
# '?' matches any constraint
|
||||
continue
|
||||
else:
|
||||
if not fuzzy_match:
|
||||
if val.strip().lower() != record[key].strip().lower():
|
||||
break
|
||||
else:
|
||||
if fuzz.partial_ratio(val.strip().lower(), record[key].strip().lower()) < fuzzy_match_ratio:
|
||||
break
|
||||
except:
|
||||
continue
|
||||
else:
|
||||
res = deepcopy(record)
|
||||
res['Ref'] = '{0:08d}'.format(i)
|
||||
found.append(res)
|
||||
|
||||
return found
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
db = Database()
|
||||
print(db.query("train", [['departure', 'cambridge'], ['destination','peterborough'], ['day', 'tuesday'], ['arriveBy', '11:15']]))
|
@ -1,8 +1,59 @@
|
||||
from model.frame import Frame
|
||||
from collections import defaultdict
|
||||
import copy
|
||||
import json
|
||||
from copy import deepcopy
|
||||
|
||||
class DialogPolicy:
|
||||
def next_dialogue_act(self, frames: list[Frame]) -> Frame:
|
||||
if frames[-1].act == "welcomemsg":
|
||||
return Frame("system", "welcomemsg", [])
|
||||
from convlab.policy.policy import Policy
|
||||
from dbquery import Database
|
||||
|
||||
class SimpleRulePolicy(Policy):
|
||||
def __init__(self):
|
||||
Policy.__init__(self)
|
||||
self.db = Database()
|
||||
|
||||
def predict(self, state):
|
||||
self.results = []
|
||||
system_action = defaultdict(list)
|
||||
user_action = defaultdict(list)
|
||||
|
||||
for intent, domain, slot, value in state['user_action']:
|
||||
user_action[(domain.lower(), intent.lower())].append((slot.lower(), value))
|
||||
|
||||
for user_act in user_action:
|
||||
self.update_system_action(user_act, user_action, state, system_action)
|
||||
|
||||
# Reguła 3
|
||||
if any(True for slots in user_action.values() for (slot, _) in slots if slot in ['book stay', 'book day', 'book people']):
|
||||
if self.results:
|
||||
system_action = {('Booking', 'Book'): [["Ref", self.results[0].get('Ref', 'N/A')]]}
|
||||
|
||||
system_acts = [[intent, domain, slot, value] for (domain, intent), slots in system_action.items() for slot, value in slots]
|
||||
state['system_action'] = system_acts
|
||||
return system_acts
|
||||
|
||||
def update_system_action(self, user_act, user_action, state, system_action):
|
||||
domain, intent = user_act
|
||||
constraints = [(slot, value) for slot, value in state['belief_state'][domain.lower()].items() if value != '']
|
||||
self.results = deepcopy(self.db.query(domain.lower(), constraints))
|
||||
|
||||
# Reguła 1
|
||||
if intent == 'request':
|
||||
if len(self.results) == 0:
|
||||
system_action[(domain, 'NoOffer')] = []
|
||||
else:
|
||||
return Frame("system", "canthelp", [])
|
||||
for slot in user_action[user_act]:
|
||||
if slot[0] in self.results[0]:
|
||||
system_action[(domain, 'Inform')].append([slot[0], self.results[0].get(slot[0], 'unknown')])
|
||||
|
||||
# Reguła 2
|
||||
elif intent == 'inform':
|
||||
if len(self.results) == 0:
|
||||
system_action[(domain, 'NoOffer')] = []
|
||||
else:
|
||||
system_action[(domain, 'Inform')].append(['Choice', str(len(self.results))])
|
||||
choice = self.results[0]
|
||||
|
||||
if domain in ["hotel", "attraction", "police", "restaurant"]:
|
||||
system_action[(domain, 'Recommend')].append(['Name', choice['name']])
|
||||
|
||||
dialogPolicy = SimpleRulePolicy()
|
Loading…
Reference in New Issue
Block a user