add onehot and getattr
This commit is contained in:
parent
b7ca0fae45
commit
d4b6a714bb
40
dataset/consts.py
Normal file
40
dataset/consts.py
Normal file
@ -0,0 +1,40 @@
|
||||
PLANT_CLASSES = [
|
||||
"Tomato",
|
||||
"Potato",
|
||||
"Corn_(maize)",
|
||||
"Apple",
|
||||
"Blueberry",
|
||||
"Soybean",
|
||||
"Cherry_(including_sour)",
|
||||
"Squash",
|
||||
"Strawberry",
|
||||
"Pepper,_bell",
|
||||
"Peach",
|
||||
"Grape",
|
||||
"Orange",
|
||||
"Raspberry",
|
||||
]
|
||||
|
||||
DISEASE_CLASSES = [
|
||||
"healthy",
|
||||
"Northern_Leaf_Blight",
|
||||
"Tomato_mosaic_virus",
|
||||
"Early_blight",
|
||||
"Leaf_scorch",
|
||||
"Tomato_Yellow_Leaf_Curl_Virus",
|
||||
"Cedar_apple_rust",
|
||||
"Late_blight",
|
||||
"Spider_mites Two-spotted_spider_mite",
|
||||
"Black_rot",
|
||||
"Bacterial_spot",
|
||||
"Apple_scab",
|
||||
"Powdery_mildew",
|
||||
"Esca_(Black_Measles)",
|
||||
"Haunglongbing_(Citrus_greening)",
|
||||
"Leaf_Mold",
|
||||
"Common_rust_",
|
||||
"Target_Spot",
|
||||
"Leaf_blight_(Isariopsis_Leaf_Spot)",
|
||||
"Septoria_leaf_spot",
|
||||
"Cercospora_leaf_spot Gray_leaf_spot",
|
||||
]
|
@ -3,6 +3,8 @@ from pathlib import Path
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
from .consts import DISEASE_CLASSES, PLANT_CLASSES
|
||||
|
||||
|
||||
class Dataset:
|
||||
''' Class to load and preprocess the dataset.
|
||||
@ -50,16 +52,23 @@ class Dataset:
|
||||
path = tf.strings.split(image_path, os.path.sep)[-2]
|
||||
plant = tf.strings.split(path, '___')[0]
|
||||
disease = tf.strings.split(path, '___')[1]
|
||||
return tf.cast(plant, dtype=tf.string, name=None), tf.cast(disease, dtype=tf.string, name=None)
|
||||
|
||||
one_hot_plant = plant == PLANT_CLASSES
|
||||
one_hot_disease = disease == DISEASE_CLASSES
|
||||
|
||||
return tf.cast(one_hot_plant, dtype=tf.uint8, name=None), tf.cast(one_hot_disease, dtype=tf.uint8, name=None)
|
||||
|
||||
def _get_image(self, image_path):
|
||||
img = tf.io.read_file(image_path)
|
||||
img = tf.io.decode_jpeg(img, channels=3) / 255.
|
||||
return tf.cast(img, dtype=tf.float32, name=None)
|
||||
img = tf.io.decode_jpeg(img, channels=3)
|
||||
return tf.cast(img, dtype=tf.float32, name=None) / 255.
|
||||
|
||||
def _preprocess(self, image_path):
|
||||
labels = self._get_labels(image_path)
|
||||
image = self._get_image(image_path)
|
||||
|
||||
# returns X, Y1, Y2
|
||||
return image, labels
|
||||
return image, labels[0], labels[1]
|
||||
|
||||
def __getattr__(self, attr):
|
||||
return getattr(self.dataset, attr)
|
||||
|
4
test.py
4
test.py
@ -6,5 +6,5 @@ from dataset.dataset import Dataset
|
||||
train_dataset = Dataset(Path('data/resized_dataset/train'))
|
||||
valid_dataset = Dataset(Path('data/resized_dataset/valid'))
|
||||
|
||||
for image, labels in train_dataset.dataset.take(1):
|
||||
print(image, labels)
|
||||
for i in train_dataset.take(1):
|
||||
print(i)
|
||||
|
Loading…
Reference in New Issue
Block a user