feature/load-dataset #2
@ -16,6 +16,7 @@ class Dataset:
|
||||
`shuffle_buffer_size (int)`: Size of the buffer for shuffling the dataset.
|
||||
`batch_size (int)`: Batch size for the dataset.
|
||||
'''
|
||||
|
||||
def __init__(self,
|
||||
data_dir: Path,
|
||||
seed: int = 42,
|
||||
@ -25,10 +26,11 @@ class Dataset:
|
||||
self.data_dir = data_dir
|
||||
self.seed = seed
|
||||
self.repeat = repeat
|
||||
self.shuffle_buffer_size = shuffle_buffer_size
|
||||
self.batch_size = batch_size
|
||||
|
||||
self.dataset = self._load_dataset()\
|
||||
.shuffle(shuffle_buffer_size, seed=self.seed)\
|
||||
.shuffle(self.shuffle_buffer_size, seed=self.seed)\
|
||||
.repeat(self.repeat)\
|
||||
.prefetch(tf.data.experimental.AUTOTUNE)
|
||||
|
||||
@ -40,27 +42,24 @@ class Dataset:
|
||||
pass
|
||||
else:
|
||||
dataset = dataset.map(
|
||||
_preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||
self._preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||
|
||||
return dataset
|
||||
|
||||
def _get_labels(self, image_path):
|
||||
path = tf.strings.split(image_path, os.path.sep)[-2]
|
||||
plant = tf.strings.split(path, '___')[0]
|
||||
disease = tf.strings.split(path, '___')[1]
|
||||
return tf.cast(plant, dtype=tf.string, name=None), tf.cast(disease, dtype=tf.string, name=None)
|
||||
|
||||
def _get_labels(image_path):
|
||||
path = tf.strings.split(image_path, os.path.sep)[-2]
|
||||
plant = tf.strings.split(path, '___')[0]
|
||||
disease = tf.strings.split(path, '___')[1]
|
||||
return tf.cast(plant, dtype=tf.string, name=None), tf.cast(disease, dtype=tf.string, name=None)
|
||||
def _get_image(self, image_path):
|
||||
img = tf.io.read_file(image_path)
|
||||
img = tf.io.decode_jpeg(img, channels=3) / 255
|
||||
return tf.cast(img, dtype=tf.float32, name=None)
|
||||
|
||||
def _preprocess(self, image_path):
|
||||
labels = self._get_labels(image_path)
|
||||
image = self._get_image(image_path)
|
||||
|
||||
def _get_image(image_path):
|
||||
img = tf.io.read_file(image_path)
|
||||
img = tf.io.decode_jpeg(img, channels=3) / 255
|
||||
return tf.cast(img, dtype=tf.float32, name=None)
|
||||
|
||||
|
||||
def _preprocess(image_path):
|
||||
labels = _get_labels(image_path)
|
||||
image = _get_image(image_path)
|
||||
|
||||
# returns X, Y1, Y2
|
||||
return image, labels
|
||||
# returns X, Y1, Y2
|
||||
return image, labels
|
||||
|
Loading…
Reference in New Issue
Block a user