feature/load-dataset #2
0
dataset/__init__.py
Normal file
0
dataset/__init__.py
Normal file
66
dataset/dataset.py
Normal file
66
dataset/dataset.py
Normal file
@ -0,0 +1,66 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import tensorflow as tf
|
||||
|
||||
|
||||
class Dataset:
|
||||
''' Class to load and preprocess the dataset.
|
||||
Loads images and labels from the given directory to tf.data.Dataset.
|
||||
|
||||
|
||||
Args:
|
||||
`data_dir (Path)`: Path to the dataset directory.
|
||||
`seed (int)`: Seed for shuffling the dataset.
|
||||
`repeat (int)`: Number of times to repeat the dataset.
|
||||
`shuffle_buffer_size (int)`: Size of the buffer for shuffling the dataset.
|
||||
`batch_size (int)`: Batch size for the dataset.
|
||||
'''
|
||||
def __init__(self,
|
||||
data_dir: Path,
|
||||
seed: int = 42,
|
||||
repeat: int = 1,
|
||||
shuffle_buffer_size: int = 10_000,
|
||||
batch_size: int = 64) -> None:
|
||||
self.data_dir = data_dir
|
||||
self.seed = seed
|
||||
self.repeat = repeat
|
||||
self.batch_size = batch_size
|
||||
|
||||
self.dataset = self._load_dataset()\
|
||||
.shuffle(shuffle_buffer_size, seed=self.seed)\
|
||||
.repeat(self.repeat)\
|
||||
.prefetch(tf.data.experimental.AUTOTUNE)
|
||||
|
||||
def _load_dataset(self) -> tf.data.Dataset:
|
||||
# check if path has 'test' word in it
|
||||
dataset = tf.data.Dataset.list_files(str(self.data_dir / '*/*'))
|
||||
if 'test' in str(self.data_dir).lower():
|
||||
# file names issue - labels have camel case (regex?) and differs from the train/valid sets
|
||||
pass
|
||||
else:
|
||||
dataset = dataset.map(
|
||||
_preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||
|
||||
return dataset
|
||||
|
||||
|
||||
def _get_labels(image_path):
|
||||
path = tf.strings.split(image_path, os.path.sep)[-2]
|
||||
plant = tf.strings.split(path, '___')[0]
|
||||
disease = tf.strings.split(path, '___')[1]
|
||||
return tf.cast(plant, dtype=tf.string, name=None), tf.cast(disease, dtype=tf.string, name=None)
|
||||
|
||||
|
||||
def _get_image(image_path):
|
||||
img = tf.io.read_file(image_path)
|
||||
img = tf.io.decode_jpeg(img, channels=3) / 255
|
||||
return tf.cast(img, dtype=tf.float32, name=None)
|
||||
|
||||
|
||||
def _preprocess(image_path):
|
||||
labels = _get_labels(image_path)
|
||||
image = _get_image(image_path)
|
||||
|
||||
# returns X, Y1, Y2
|
||||
return image, labels
|
19
file_manager/shard_files.py
Normal file
19
file_manager/shard_files.py
Normal file
@ -0,0 +1,19 @@
|
||||
from pathlib import Path
|
||||
|
||||
# TODO: split the files into smaller dirs and make list of them
|
||||
class FileSharder:
|
||||
def __init__(self,
|
||||
train_dir: Path = Path('./data/resized_dataset/train'),
|
||||
valid_dir: Path = Path('./data/resized_dataset/valid'),
|
||||
test_dir: Path = Path('./data/resized_dataset/test'),
|
||||
shard_size = 5_000) -> None:
|
||||
self.shard_size = shard_size
|
||||
|
||||
self.train_dir = train_dir
|
||||
self.valid_dir = valid_dir
|
||||
self.test_dir = test_dir
|
||||
|
||||
self.shard()
|
||||
|
||||
def shard(self):
|
||||
pass
|
10
test.py
Normal file
10
test.py
Normal file
@ -0,0 +1,10 @@
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from dataset.dataset import Dataset
|
||||
|
||||
train_dataset = Dataset(Path('data/resized_dataset/train'))
|
||||
valid_dataset = Dataset(Path('data/resized_dataset/valid'))
|
||||
|
||||
for image, labels in train_dataset.dataset.take(1):
|
||||
print(image, labels)
|
Loading…
Reference in New Issue
Block a user