feature/load-dataset #2
0
dataset/__init__.py
Normal file
0
dataset/__init__.py
Normal file
40
dataset/consts.py
Normal file
40
dataset/consts.py
Normal file
@ -0,0 +1,40 @@
|
|||||||
|
PLANT_CLASSES = [
|
||||||
|
"Tomato",
|
||||||
|
"Potato",
|
||||||
|
"Corn_(maize)",
|
||||||
|
"Apple",
|
||||||
|
"Blueberry",
|
||||||
|
"Soybean",
|
||||||
|
"Cherry_(including_sour)",
|
||||||
|
"Squash",
|
||||||
|
"Strawberry",
|
||||||
|
"Pepper,_bell",
|
||||||
|
"Peach",
|
||||||
|
"Grape",
|
||||||
|
"Orange",
|
||||||
|
"Raspberry",
|
||||||
|
]
|
||||||
|
|
||||||
|
DISEASE_CLASSES = [
|
||||||
|
"healthy",
|
||||||
|
"Northern_Leaf_Blight",
|
||||||
|
"Tomato_mosaic_virus",
|
||||||
|
"Early_blight",
|
||||||
|
"Leaf_scorch",
|
||||||
|
"Tomato_Yellow_Leaf_Curl_Virus",
|
||||||
|
"Cedar_apple_rust",
|
||||||
|
"Late_blight",
|
||||||
|
"Spider_mites Two-spotted_spider_mite",
|
||||||
|
"Black_rot",
|
||||||
|
"Bacterial_spot",
|
||||||
|
"Apple_scab",
|
||||||
|
"Powdery_mildew",
|
||||||
|
"Esca_(Black_Measles)",
|
||||||
|
"Haunglongbing_(Citrus_greening)",
|
||||||
|
"Leaf_Mold",
|
||||||
|
"Common_rust_",
|
||||||
|
"Target_Spot",
|
||||||
|
"Leaf_blight_(Isariopsis_Leaf_Spot)",
|
||||||
|
"Septoria_leaf_spot",
|
||||||
|
"Cercospora_leaf_spot Gray_leaf_spot",
|
||||||
|
]
|
75
dataset/dataset.py
Normal file
75
dataset/dataset.py
Normal file
@ -0,0 +1,75 @@
|
|||||||
|
import os
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import tensorflow as tf
|
||||||
|
|
||||||
|
from .consts import DISEASE_CLASSES, PLANT_CLASSES
|
||||||
|
|
||||||
|
|
||||||
|
class Dataset:
|
||||||
|
''' Class to load and preprocess the dataset.
|
||||||
|
Loads images and labels from the given directory to tf.data.Dataset.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
`data_dir (Path)`: Path to the dataset directory.
|
||||||
|
`seed (int)`: Seed for shuffling the dataset.
|
||||||
|
`repeat (int)`: Number of times to repeat the dataset.
|
||||||
|
`shuffle_buffer_size (int)`: Size of the buffer for shuffling the dataset.
|
||||||
|
`batch_size (int)`: Batch size for the dataset.
|
||||||
|
'''
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
data_dir: Path,
|
||||||
|
seed: int = 42,
|
||||||
|
repeat: int = 1,
|
||||||
|
shuffle_buffer_size: int = 10_000,
|
||||||
|
batch_size: int = 64) -> None:
|
||||||
|
self.data_dir = data_dir
|
||||||
|
self.seed = seed
|
||||||
|
self.repeat = repeat
|
||||||
|
self.shuffle_buffer_size = shuffle_buffer_size
|
||||||
|
self.batch_size = batch_size
|
||||||
|
|
||||||
|
self.dataset = self.__load_dataset()\
|
||||||
|
.shuffle(self.shuffle_buffer_size, seed=self.seed)\
|
||||||
|
.repeat(self.repeat)\
|
||||||
|
.batch(self.batch_size, drop_remainder=True)\
|
||||||
|
.prefetch(tf.data.experimental.AUTOTUNE)
|
||||||
|
|
||||||
|
def __load_dataset(self) -> tf.data.Dataset:
|
||||||
|
# check if path has 'test' word in it
|
||||||
|
dataset = tf.data.Dataset.list_files(str(self.data_dir / '*/*'))
|
||||||
|
if 'test' in str(self.data_dir).lower():
|
||||||
|
# file names issue - labels have camel case (regex?) and differs from the train/valid sets
|
||||||
|
pass
|
||||||
|
else:
|
||||||
|
dataset = dataset.map(
|
||||||
|
self.__preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
|
||||||
|
|
||||||
|
return dataset
|
||||||
|
|
||||||
|
def __get_labels(self, image_path):
|
||||||
|
path = tf.strings.split(image_path, os.path.sep)[-2]
|
||||||
|
plant = tf.strings.split(path, '___')[0]
|
||||||
|
disease = tf.strings.split(path, '___')[1]
|
||||||
|
|
||||||
|
one_hot_plant = plant == PLANT_CLASSES
|
||||||
|
one_hot_disease = disease == DISEASE_CLASSES
|
||||||
|
|
||||||
|
return tf.cast(one_hot_plant, dtype=tf.uint8, name=None), tf.cast(one_hot_disease, dtype=tf.uint8, name=None)
|
||||||
|
|
||||||
|
def __get_image(self, image_path):
|
||||||
|
img = tf.io.read_file(image_path)
|
||||||
|
img = tf.io.decode_jpeg(img, channels=3)
|
||||||
|
return tf.cast(img, dtype=tf.float32, name=None) / 255.
|
||||||
|
|
||||||
|
def __preprocess(self, image_path):
|
||||||
|
labels = self.__get_labels(image_path)
|
||||||
|
image = self.__get_image(image_path)
|
||||||
|
|
||||||
|
# returns X, Y1, Y2
|
||||||
|
return image, labels[0], labels[1]
|
||||||
|
|
||||||
|
def __getattr__(self, attr):
|
||||||
|
return getattr(self.dataset, attr)
|
19
file_manager/shard_files.py
Normal file
19
file_manager/shard_files.py
Normal file
@ -0,0 +1,19 @@
|
|||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
# TODO: split the files into smaller dirs and make list of them
|
||||||
|
class FileSharder:
|
||||||
|
def __init__(self,
|
||||||
|
train_dir: Path = Path('./data/resized_dataset/train'),
|
||||||
|
valid_dir: Path = Path('./data/resized_dataset/valid'),
|
||||||
|
test_dir: Path = Path('./data/resized_dataset/test'),
|
||||||
|
shard_size = 5_000) -> None:
|
||||||
|
self.shard_size = shard_size
|
||||||
|
|
||||||
|
self.train_dir = train_dir
|
||||||
|
self.valid_dir = valid_dir
|
||||||
|
self.test_dir = test_dir
|
||||||
|
|
||||||
|
self.shard()
|
||||||
|
|
||||||
|
def shard(self):
|
||||||
|
pass
|
@ -1,5 +1,4 @@
|
|||||||
tensorflow==2.16.1
|
tensorflow==2.16.1
|
||||||
tensorflow-io==0.37.0
|
|
||||||
numpy==1.26.4
|
numpy==1.26.4
|
||||||
opencv-python==4.9.0.80
|
opencv-python==4.9.0.80
|
||||||
wget==3.2
|
wget==3.2
|
||||||
|
Loading…
Reference in New Issue
Block a user