Python2018/labs05/pandas_wprowadzenie.ipynb
2018-06-02 16:39:34 +02:00

72 KiB
Raw Permalink Blame History

Analiza danych w Pythonie

Tomasz Dwojak

3 czerwca 2018

Analiza danych:

  • R
  • Python

Python Ekosystem

  • pandas: ramka danych
  • sklearn: modele ML
  • numpy: obliczenia
  • matplotlib: wykresy
%matplotlib inline
import pandas as pd

Typy danych

  • Szereg (pd.Series)
  • Ramka danych (pd.DataFrame)

Wczytanie danych

data = pd.read_csv("./data/iowa.csv.gz")
data.head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000

5 rows × 81 columns

shape = data.shape
rows = shape[0]
cols = shape[1]

print(rows, cols)
(1460, 81)
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):
Id               1460 non-null int64
MSSubClass       1460 non-null int64
MSZoning         1460 non-null object
LotFrontage      1201 non-null float64
LotArea          1460 non-null int64
Street           1460 non-null object
Alley            91 non-null object
LotShape         1460 non-null object
LandContour      1460 non-null object
Utilities        1460 non-null object
LotConfig        1460 non-null object
LandSlope        1460 non-null object
Neighborhood     1460 non-null object
Condition1       1460 non-null object
Condition2       1460 non-null object
BldgType         1460 non-null object
HouseStyle       1460 non-null object
OverallQual      1460 non-null int64
OverallCond      1460 non-null int64
YearBuilt        1460 non-null int64
YearRemodAdd     1460 non-null int64
RoofStyle        1460 non-null object
RoofMatl         1460 non-null object
Exterior1st      1460 non-null object
Exterior2nd      1460 non-null object
MasVnrType       1452 non-null object
MasVnrArea       1452 non-null float64
ExterQual        1460 non-null object
ExterCond        1460 non-null object
Foundation       1460 non-null object
BsmtQual         1423 non-null object
BsmtCond         1423 non-null object
BsmtExposure     1422 non-null object
BsmtFinType1     1423 non-null object
BsmtFinSF1       1460 non-null int64
BsmtFinType2     1422 non-null object
BsmtFinSF2       1460 non-null int64
BsmtUnfSF        1460 non-null int64
TotalBsmtSF      1460 non-null int64
Heating          1460 non-null object
HeatingQC        1460 non-null object
CentralAir       1460 non-null object
Electrical       1459 non-null object
1stFlrSF         1460 non-null int64
2ndFlrSF         1460 non-null int64
LowQualFinSF     1460 non-null int64
GrLivArea        1460 non-null int64
BsmtFullBath     1460 non-null int64
BsmtHalfBath     1460 non-null int64
FullBath         1460 non-null int64
HalfBath         1460 non-null int64
BedroomAbvGr     1460 non-null int64
KitchenAbvGr     1460 non-null int64
KitchenQual      1460 non-null object
TotRmsAbvGrd     1460 non-null int64
Functional       1460 non-null object
Fireplaces       1460 non-null int64
FireplaceQu      770 non-null object
GarageType       1379 non-null object
GarageYrBlt      1379 non-null float64
GarageFinish     1379 non-null object
GarageCars       1460 non-null int64
GarageArea       1460 non-null int64
GarageQual       1379 non-null object
GarageCond       1379 non-null object
PavedDrive       1460 non-null object
WoodDeckSF       1460 non-null int64
OpenPorchSF      1460 non-null int64
EnclosedPorch    1460 non-null int64
3SsnPorch        1460 non-null int64
ScreenPorch      1460 non-null int64
PoolArea         1460 non-null int64
PoolQC           7 non-null object
Fence            281 non-null object
MiscFeature      54 non-null object
MiscVal          1460 non-null int64
MoSold           1460 non-null int64
YrSold           1460 non-null int64
SaleType         1460 non-null object
SaleCondition    1460 non-null object
SalePrice        1460 non-null int64
dtypes: float64(3), int64(35), object(43)
memory usage: 924.0+ KB
data.describe()
Id MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 ... WoodDeckSF OpenPorchSF EnclosedPorch 3SsnPorch ScreenPorch PoolArea MiscVal MoSold YrSold SalePrice
count 1460.000000 1460.000000 1201.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1452.000000 1460.000000 ... 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000 1460.000000
mean 730.500000 56.897260 70.049958 10516.828082 6.099315 5.575342 1971.267808 1984.865753 103.685262 443.639726 ... 94.244521 46.660274 21.954110 3.409589 15.060959 2.758904 43.489041 6.321918 2007.815753 180921.195890
std 421.610009 42.300571 24.284752 9981.264932 1.382997 1.112799 30.202904 20.645407 181.066207 456.098091 ... 125.338794 66.256028 61.119149 29.317331 55.757415 40.177307 496.123024 2.703626 1.328095 79442.502883
min 1.000000 20.000000 21.000000 1300.000000 1.000000 1.000000 1872.000000 1950.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 2006.000000 34900.000000
25% 365.750000 20.000000 59.000000 7553.500000 5.000000 5.000000 1954.000000 1967.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.000000 2007.000000 129975.000000
50% 730.500000 50.000000 69.000000 9478.500000 6.000000 5.000000 1973.000000 1994.000000 0.000000 383.500000 ... 0.000000 25.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6.000000 2008.000000 163000.000000
75% 1095.250000 70.000000 80.000000 11601.500000 7.000000 6.000000 2000.000000 2004.000000 166.000000 712.250000 ... 168.000000 68.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8.000000 2009.000000 214000.000000
max 1460.000000 190.000000 313.000000 215245.000000 10.000000 9.000000 2010.000000 2010.000000 1600.000000 5644.000000 ... 857.000000 547.000000 552.000000 508.000000 480.000000 738.000000 15500.000000 12.000000 2010.000000 755000.000000

8 rows × 38 columns

Dostęp do danych

print(data.columns)
Index([u'Id', u'MSSubClass', u'MSZoning', u'LotFrontage', u'LotArea',
       u'Street', u'Alley', u'LotShape', u'LandContour', u'Utilities',
       u'LotConfig', u'LandSlope', u'Neighborhood', u'Condition1',
       u'Condition2', u'BldgType', u'HouseStyle', u'OverallQual',
       u'OverallCond', u'YearBuilt', u'YearRemodAdd', u'RoofStyle',
       u'RoofMatl', u'Exterior1st', u'Exterior2nd', u'MasVnrType',
       u'MasVnrArea', u'ExterQual', u'ExterCond', u'Foundation', u'BsmtQual',
       u'BsmtCond', u'BsmtExposure', u'BsmtFinType1', u'BsmtFinSF1',
       u'BsmtFinType2', u'BsmtFinSF2', u'BsmtUnfSF', u'TotalBsmtSF',
       u'Heating', u'HeatingQC', u'CentralAir', u'Electrical', u'1stFlrSF',
       u'2ndFlrSF', u'LowQualFinSF', u'GrLivArea', u'BsmtFullBath',
       u'BsmtHalfBath', u'FullBath', u'HalfBath', u'BedroomAbvGr',
       u'KitchenAbvGr', u'KitchenQual', u'TotRmsAbvGrd', u'Functional',
       u'Fireplaces', u'FireplaceQu', u'GarageType', u'GarageYrBlt',
       u'GarageFinish', u'GarageCars', u'GarageArea', u'GarageQual',
       u'GarageCond', u'PavedDrive', u'WoodDeckSF', u'OpenPorchSF',
       u'EnclosedPorch', u'3SsnPorch', u'ScreenPorch', u'PoolArea', u'PoolQC',
       u'Fence', u'MiscFeature', u'MiscVal', u'MoSold', u'YrSold', u'SaleType',
       u'SaleCondition', u'SalePrice'],
      dtype='object')
print(data['MSSubClass'].head())
0    60
1    20
2    60
3    70
4    60
Name: MSSubClass, dtype: int64
print(data[['MSSubClass', 'SalePrice']].head())
   MSSubClass  SalePrice
0          60     208500
1          20     181500
2          60     223500
3          70     140000
4          60     250000
data.loc[[0,3]]
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000

2 rows × 81 columns

data.loc[0:5]
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000
5 6 50 RL 85.0 14115 Pave NaN IR1 Lvl AllPub ... 0 NaN MnPrv Shed 700 10 2009 WD Normal 143000

6 rows × 81 columns

data[data['MSZoning'] == 'RL'].head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 9 2008 WD Normal 223500
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 2 2006 WD Abnorml 140000
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... 0 NaN NaN NaN 0 12 2008 WD Normal 250000

5 rows × 81 columns

data[(data['MSZoning'] == 'RL') & (data['LotShape'] == 'Reg')].head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice
0 1 60 RL 65.0 8450 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 208500
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 5 2007 WD Normal 181500
6 7 20 RL 75.0 10084 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 8 2007 WD Normal 307000
9 10 190 RL 50.0 7420 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 1 2008 WD Normal 118000
10 11 20 RL 70.0 11200 Pave NaN Reg Lvl AllPub ... 0 NaN NaN NaN 0 2 2008 WD Normal 129500

5 rows × 81 columns

ceny = data['SalePrice']
ceny.mean()
180921.19589041095
ceny.max()
755000
ceny.name
'SalePrice'
print("Plus vat:", ceny * 1.23)
('Plus vat:', 0       256455.00
1       223245.00
2       274905.00
3       172200.00
4       307500.00
5       175890.00
6       377610.00
7       246000.00
8       159777.00
9       145140.00
10      159285.00
11      424350.00
12      177120.00
13      343785.00
14      193110.00
15      162360.00
16      183270.00
17      110700.00
18      195570.00
19      170970.00
20      400119.00
21      171462.00
22      282900.00
23      159777.00
24      189420.00
25      315249.00
26      165804.00
27      376380.00
28      255225.00
29       84255.00
          ...    
1430    236332.20
1431    176812.50
1432     79335.00
1433    229395.00
1434    196800.00
1435    214020.00
1436    148215.00
1437    485378.91
1438    184131.00
1439    242310.00
1440    234930.00
1441    183639.00
1442    381300.00
1443    148830.00
1444    220908.00
1445    158670.00
1446    194217.00
1447    295200.00
1448    137760.00
1449    113160.00
1450    167280.00
1451    353120.70
1452    178350.00
1453    103935.00
1454    227550.00
1455    215250.00
1456    258300.00
1457    327795.00
1458    174813.75
1459    181425.00
Name: SalePrice, Length: 1460, dtype: float64)
data.MSZoning.unique()
array(['RL', 'RM', 'C (all)', 'FV', 'RH'], dtype=object)
data.MSZoning.value_counts()
RL         1151
RM          218
FV           65
RH           16
C (all)      10
Name: MSZoning, dtype: int64
data['nowa'] = ceny * 1.23
data.drop('LotArea', axis=1)
data.drop(['Id', 'LotArea'], axis=1).head()
MSSubClass MSZoning LotFrontage Street Alley LotShape LandContour Utilities LotConfig LandSlope ... PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice nowa
0 60 RL 65.0 Pave NaN Reg Lvl AllPub Inside Gtl ... NaN NaN NaN 0 2 2008 WD Normal 208500 256455.0
1 20 RL 80.0 Pave NaN Reg Lvl AllPub FR2 Gtl ... NaN NaN NaN 0 5 2007 WD Normal 181500 223245.0
2 60 RL 68.0 Pave NaN IR1 Lvl AllPub Inside Gtl ... NaN NaN NaN 0 9 2008 WD Normal 223500 274905.0
3 70 RL 60.0 Pave NaN IR1 Lvl AllPub Corner Gtl ... NaN NaN NaN 0 2 2006 WD Abnorml 140000 172200.0
4 60 RL 84.0 Pave NaN IR1 Lvl AllPub FR2 Gtl ... NaN NaN NaN 0 12 2008 WD Normal 250000 307500.0

5 rows × 80 columns

data.drop(0).head()
Id MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape LandContour Utilities ... PoolQC Fence MiscFeature MiscVal MoSold YrSold SaleType SaleCondition SalePrice nowa
1 2 20 RL 80.0 9600 Pave NaN Reg Lvl AllPub ... NaN NaN NaN 0 5 2007 WD Normal 181500 223245.0
2 3 60 RL 68.0 11250 Pave NaN IR1 Lvl AllPub ... NaN NaN NaN 0 9 2008 WD Normal 223500 274905.0
3 4 70 RL 60.0 9550 Pave NaN IR1 Lvl AllPub ... NaN NaN NaN 0 2 2006 WD Abnorml 140000 172200.0
4 5 60 RL 84.0 14260 Pave NaN IR1 Lvl AllPub ... NaN NaN NaN 0 12 2008 WD Normal 250000 307500.0
5 6 50 RL 85.0 14115 Pave NaN IR1 Lvl AllPub ... NaN MnPrv Shed 700 10 2009 WD Normal 143000 175890.0

5 rows × 82 columns