46 KiB
MLflow
- https://mlflow.org/
- Narzędzie podobne do omawianego na poprzednich zajęciach Sacred
- Nieco inne podejście: mniej ingerencji w istniejący kod
- Bardziej kompleksowe rozwiązanie: 4 komponenty, pierwszy z nich ma funkcjonalność podobną do Sacred
- Działa "z każdym" językiem. A tak naprawdę: Python, R, Java + CLI API + REST API
- Popularna wśród pracodawców - wyniki wyszukiwania ofert pracy: 20 ofert (https://pl.indeed.com/), 36 ofert (linkedin). Sacred: 0
- Integracja z licznymi bibliotekami / chmurami
Komponenty
MLflow składa się z czterech niezależnych komponentów:
MLflow Tracking - pozwala śledzić zmiany parametrów, kodu, środowiska i ich wpływ na metryki. Jest to funkcjonalność bardzo zbliżona do tej, którą zapewnia Sacred
MLflow Projects - umożliwia "pakowanie" kodu ekserymentów w taki sposób, żeby mogłby być w łatwy sposób zreprodukowane przez innych
MLflow Models - ułatwia "pakowanie" modeli uczenia maszynowego
MLflow Registry - zapewnia centralne miejsce do przechowywania i współdzielenia modeli. Zapewnia narzędzia do wersjonowania i śledzenia pochodzenia tych modeli.
Komponenty te mogą być używane razem bądź oddzielnie.
MLflow Tracking - przykład
(poniższe przykłady kodu trenującego pochodzą z tutoriala MLflow: https://mlflow.org/docs/latest/tutorials-and-examples/tutorial.html)
%%capture null
!pip install mlflow
!pip install sklearn
%%writefile IUM_08/examples/sklearn_elasticnet_wine/train.py
# The data set used in this example is from http://archive.ics.uci.edu/ml/datasets/Wine+Quality
# P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.
# Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553, 2009.
import os
import warnings
import sys
import pandas as pd
import numpy as np
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
from sklearn.model_selection import train_test_split
from sklearn.linear_model import ElasticNet
from urllib.parse import urlparse
import mlflow
import mlflow.sklearn
import logging
logging.basicConfig(level=logging.WARN)
logger = logging.getLogger(__name__)
def eval_metrics(actual, pred):
rmse = np.sqrt(mean_squared_error(actual, pred))
mae = mean_absolute_error(actual, pred)
r2 = r2_score(actual, pred)
return rmse, mae, r2
if __name__ == "__main__":
warnings.filterwarnings("ignore")
np.random.seed(40)
# Read the wine-quality csv file from the URL
csv_url = (
"http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv"
)
try:
data = pd.read_csv(csv_url, sep=";")
except Exception as e:
logger.exception(
"Unable to download training & test CSV, check your internet connection. Error: %s", e
)
# Split the data into training and test sets. (0.75, 0.25) split.
train, test = train_test_split(data)
# The predicted column is "quality" which is a scalar from [3, 9]
train_x = train.drop(["quality"], axis=1)
test_x = test.drop(["quality"], axis=1)
train_y = train[["quality"]]
test_y = test[["quality"]]
alpha = float(sys.argv[1]) if len(sys.argv) > 1 else 0.5
#alpha = 0.5
l1_ratio = float(sys.argv[2]) if len(sys.argv) > 2 else 0.5
#l1_ratio = 0.5
with mlflow.start_run():
lr = ElasticNet(alpha=alpha, l1_ratio=l1_ratio, random_state=42)
lr.fit(train_x, train_y)
predicted_qualities = lr.predict(test_x)
(rmse, mae, r2) = eval_metrics(test_y, predicted_qualities)
print("Elasticnet model (alpha=%f, l1_ratio=%f):" % (alpha, l1_ratio))
print(" RMSE: %s" % rmse)
print(" MAE: %s" % mae)
print(" R2: %s" % r2)
mlflow.log_param("alpha", alpha)
mlflow.log_param("l1_ratio", l1_ratio)
mlflow.log_metric("rmse", rmse)
mlflow.log_metric("r2", r2)
mlflow.log_metric("mae", mae)
tracking_url_type_store = urlparse(mlflow.get_tracking_uri()).scheme
# Model registry does not work with file store
if tracking_url_type_store != "file":
# Register the model
# There are other ways to use the Model Registry, which depends on the use case,
# please refer to the doc for more information:
# https://mlflow.org/docs/latest/model-registry.html#api-workflow
mlflow.sklearn.log_model(lr, "model", registered_model_name="ElasticnetWineModel")
else:
mlflow.sklearn.log_model(lr, "model")
Overwriting IUM_08/examples/sklearn_elasticnet_wine/train.py
### Wtyrenujmy model z domyślnymi wartościami parametrów
! cd ./IUM_08/examples/; python sklearn_elasticnet_wine/train.py
Elasticnet model (alpha=0.500000, l1_ratio=0.500000): RMSE: 0.7931640229276851 MAE: 0.6271946374319586 R2: 0.10862644997792614
### I jeszcze raz, tym razem ze zmienionymi wartościami parametrów
! cd ./IUM_08/examples/; for l in {1..9}; do for a in {1..9}; do python sklearn_elasticnet_wine/train.py 0.$a 0.$l; done; done
Elasticnet model (alpha=0.100000, l1_ratio=0.100000): RMSE: 0.7128829045893679 MAE: 0.5462202174984664 R2: 0.2799376066653344 Elasticnet model (alpha=0.200000, l1_ratio=0.100000): RMSE: 0.7268133518615142 MAE: 0.5586842416161892 R2: 0.251521166881557 Elasticnet model (alpha=0.300000, l1_ratio=0.100000): RMSE: 0.7347397539240514 MAE: 0.5657315547549873 R2: 0.23510678899596094 Elasticnet model (alpha=0.400000, l1_ratio=0.100000): RMSE: 0.7410782793160982 MAE: 0.5712718681984227 R2: 0.22185255063708875 Elasticnet model (alpha=0.500000, l1_ratio=0.100000): RMSE: 0.7460550348172179 MAE: 0.576381895873763 R2: 0.21136606570632266 Elasticnet model (alpha=0.600000, l1_ratio=0.100000): RMSE: 0.7510866447955419 MAE: 0.5815681289333974 R2: 0.20069264568704714 Elasticnet model (alpha=0.700000, l1_ratio=0.100000): RMSE: 0.7560654760040749 MAE: 0.5868129921328281 R2: 0.19006056603695476 Elasticnet model (alpha=0.800000, l1_ratio=0.100000): RMSE: 0.7609263702116827 MAE: 0.5919470003487062 R2: 0.17961256649282442 Elasticnet model (alpha=0.900000, l1_ratio=0.100000): RMSE: 0.7656313758553691 MAE: 0.5969367233859049 R2: 0.16943586313742276 Elasticnet model (alpha=0.100000, l1_ratio=0.200000): RMSE: 0.7201489594275661 MAE: 0.5525324524014098 R2: 0.26518433811823017 Elasticnet model (alpha=0.200000, l1_ratio=0.200000): RMSE: 0.7336400911821402 MAE: 0.5643841279275428 R2: 0.23739466063584158 Elasticnet model (alpha=0.300000, l1_ratio=0.200000): RMSE: 0.7397486012946922 MAE: 0.5704931175017443 R2: 0.22464242411894242 Elasticnet model (alpha=0.400000, l1_ratio=0.200000): RMSE: 0.7468093030485085 MAE: 0.5777243300021722 R2: 0.2097706278632726 Elasticnet model (alpha=0.500000, l1_ratio=0.200000): RMSE: 0.7543919979968401 MAE: 0.5857669727382302 R2: 0.19364204365178095 Elasticnet model (alpha=0.600000, l1_ratio=0.200000): RMSE: 0.7622123676513404 MAE: 0.5938629318868578 R2: 0.17683724501340814 Elasticnet model (alpha=0.700000, l1_ratio=0.200000): RMSE: 0.7700845840888665 MAE: 0.6024685725504659 R2: 0.15974600028150265 Elasticnet model (alpha=0.800000, l1_ratio=0.200000): RMSE: 0.7778880968569085 MAE: 0.6105907461474273 R2: 0.14263059582492588 Elasticnet model (alpha=0.900000, l1_ratio=0.200000): RMSE: 0.7855450337039626 MAE: 0.6182359127922239 R2: 0.1256689455181047 Elasticnet model (alpha=0.100000, l1_ratio=0.300000): RMSE: 0.7260299544064643 MAE: 0.5571534327625295 R2: 0.2531337966130104 Elasticnet model (alpha=0.200000, l1_ratio=0.300000): RMSE: 0.7357092639331829 MAE: 0.5667609266233857 R2: 0.23308686049079996 Elasticnet model (alpha=0.300000, l1_ratio=0.300000): RMSE: 0.7443224557281489 MAE: 0.5754825491733004 R2: 0.2150247343683439 Elasticnet model (alpha=0.400000, l1_ratio=0.300000): RMSE: 0.7545302211047864 MAE: 0.5862255018460154 R2: 0.19334652749043568 Elasticnet model (alpha=0.500000, l1_ratio=0.300000): RMSE: 0.7657094552843393 MAE: 0.597876674089536 R2: 0.16926645189778677 Elasticnet model (alpha=0.600000, l1_ratio=0.300000): RMSE: 0.7774287676055035 MAE: 0.6102458961382884 R2: 0.14364282001967787 Elasticnet model (alpha=0.700000, l1_ratio=0.300000): RMSE: 0.7876149030178985 MAE: 0.6208628759605734 R2: 0.12105524358911324 Elasticnet model (alpha=0.800000, l1_ratio=0.300000): RMSE: 0.7972426725990548 MAE: 0.6310633254738363 R2: 0.09943554388738107 Elasticnet model (alpha=0.900000, l1_ratio=0.300000): RMSE: 0.806653553139972 MAE: 0.6407940021176486 R2: 0.07804901733081859 Elasticnet model (alpha=0.100000, l1_ratio=0.400000): RMSE: 0.7301757756825391 MAE: 0.5603782497631705 R2: 0.24457984004307665 Elasticnet model (alpha=0.200000, l1_ratio=0.400000): RMSE: 0.7383379454127179 MAE: 0.5696920200435643 R2: 0.22759672468382497 Elasticnet model (alpha=0.300000, l1_ratio=0.400000): RMSE: 0.7501603725852 MAE: 0.5818749078280213 R2: 0.2026629101382652 Elasticnet model (alpha=0.400000, l1_ratio=0.400000): RMSE: 0.7644619587468349 MAE: 0.5966303605775048 R2: 0.17197111491474282 Elasticnet model (alpha=0.500000, l1_ratio=0.400000): RMSE: 0.7794144864140182 MAE: 0.6125287339702588 R2: 0.1392625955410326 Elasticnet model (alpha=0.600000, l1_ratio=0.400000): RMSE: 0.7928446872861473 MAE: 0.626666444473971 R2: 0.10934405701835759 Elasticnet model (alpha=0.700000, l1_ratio=0.400000): RMSE: 0.8064523157995205 MAE: 0.6407990295001776 R2: 0.07850896155515663 Elasticnet model (alpha=0.800000, l1_ratio=0.400000): RMSE: 0.8200264141399415 MAE: 0.6539313398770489 R2: 0.04722706260889009 Elasticnet model (alpha=0.900000, l1_ratio=0.400000): RMSE: 0.8317936823364004 MAE: 0.6647839366878934 R2: 0.01968654319755092 Elasticnet model (alpha=0.100000, l1_ratio=0.500000): RMSE: 0.7308996187375898 MAE: 0.5615486628017713 R2: 0.2430813606733676 Elasticnet model (alpha=0.200000, l1_ratio=0.500000): RMSE: 0.7415652207304311 MAE: 0.573067857646195 R2: 0.22082961765864062 Elasticnet model (alpha=0.300000, l1_ratio=0.500000): RMSE: 0.7573787958793151 MAE: 0.5893143148791096 R2: 0.18724431943947983 Elasticnet model (alpha=0.400000, l1_ratio=0.500000): RMSE: 0.7759342885655987 MAE: 0.6090076377075831 R2: 0.14693206734185604 Elasticnet model (alpha=0.500000, l1_ratio=0.500000): RMSE: 0.7931640229276851 MAE: 0.6271946374319586 R2: 0.10862644997792614 Elasticnet model (alpha=0.600000, l1_ratio=0.500000): RMSE: 0.8112953030727291 MAE: 0.645693705089251 R2: 0.06740807086129252 Elasticnet model (alpha=0.700000, l1_ratio=0.500000): RMSE: 0.8298921852578498 MAE: 0.6629780128961713 R2: 0.024163452726365775 Elasticnet model (alpha=0.800000, l1_ratio=0.500000): RMSE: 0.8320198635059106 MAE: 0.6657357030427604 R2: 0.019153337439844154 Elasticnet model (alpha=0.900000, l1_ratio=0.500000): RMSE: 0.8323808561832262 MAE: 0.6669472047761406 R2: 0.0183020229672054 Elasticnet model (alpha=0.100000, l1_ratio=0.600000): RMSE: 0.7317723392279818 MAE: 0.5627373693033669 R2: 0.24127270524006605 Elasticnet model (alpha=0.200000, l1_ratio=0.600000): RMSE: 0.7454324777911233 MAE: 0.5772117261484206 R2: 0.21268169183406394 Elasticnet model (alpha=0.300000, l1_ratio=0.600000): RMSE: 0.7661028672396263 MAE: 0.5984406933733759 R2: 0.16841259155853305 Elasticnet model (alpha=0.400000, l1_ratio=0.600000): RMSE: 0.787179486885359 MAE: 0.6210967388389844 R2: 0.12202678676193257 Elasticnet model (alpha=0.500000, l1_ratio=0.600000): RMSE: 0.809739471626647 MAE: 0.6442565454817458 R2: 0.07098152823463388 Elasticnet model (alpha=0.600000, l1_ratio=0.600000): RMSE: 0.8317884179944764 MAE: 0.6647524814105722 R2: 0.019698951776764728 Elasticnet model (alpha=0.700000, l1_ratio=0.600000): RMSE: 0.8321519738036909 MAE: 0.6662086037874676 R2: 0.018841829895677176 Elasticnet model (alpha=0.800000, l1_ratio=0.600000): RMSE: 0.8326350511178233 MAE: 0.6676630843299566 R2: 0.01770234373563795 Elasticnet model (alpha=0.900000, l1_ratio=0.600000): RMSE: 0.8332048101440411 MAE: 0.6690717294644856 R2: 0.016357542209390563 Elasticnet model (alpha=0.100000, l1_ratio=0.700000): RMSE: 0.7327938109945942 MAE: 0.5640101718105491 R2: 0.23915303116151632 Elasticnet model (alpha=0.200000, l1_ratio=0.700000): RMSE: 0.7499835110445395 MAE: 0.5819389930665501 R2: 0.20303883413454027 Elasticnet model (alpha=0.300000, l1_ratio=0.700000): RMSE: 0.7747136483567111 MAE: 0.6079678532556209 R2: 0.14961391810397695 Elasticnet model (alpha=0.400000, l1_ratio=0.700000): RMSE: 0.8004478857657858 MAE: 0.6350378679245181 R2: 0.09217977708630032 Elasticnet model (alpha=0.500000, l1_ratio=0.700000): RMSE: 0.829586285479097 MAE: 0.6627028304266674 R2: 0.024882710417618137 Elasticnet model (alpha=0.600000, l1_ratio=0.700000): RMSE: 0.8321502650365332 MAE: 0.6662000872414003 R2: 0.018845859373919027 Elasticnet model (alpha=0.700000, l1_ratio=0.700000): RMSE: 0.832725785743381 MAE: 0.667898097502809 R2: 0.017488244494447747 Elasticnet model (alpha=0.800000, l1_ratio=0.700000): RMSE: 0.8331825395236181 MAE: 0.6692175076829847 R2: 0.016410124803194592 Elasticnet model (alpha=0.900000, l1_ratio=0.700000): RMSE: 0.8331069437643933 MAE: 0.6697424890266508 R2: 0.016588601539516357 Elasticnet model (alpha=0.100000, l1_ratio=0.800000): RMSE: 0.7339712501091269 MAE: 0.5654097809725043 R2: 0.23670603806205326 Elasticnet model (alpha=0.200000, l1_ratio=0.800000): RMSE: 0.7552646505492441 MAE: 0.5873472009739388 R2: 0.19177543499093674 Elasticnet model (alpha=0.300000, l1_ratio=0.800000): RMSE: 0.7836957692333741 MAE: 0.6176788505535867 R2: 0.12978065429593022 Elasticnet model (alpha=0.400000, l1_ratio=0.800000): RMSE: 0.8160164529135189 MAE: 0.650349905850893 R2: 0.05652247327326554 Elasticnet model (alpha=0.500000, l1_ratio=0.800000): RMSE: 0.8320145539945119 MAE: 0.6657081587004348 R2: 0.019165855890777572 Elasticnet model (alpha=0.600000, l1_ratio=0.800000): RMSE: 0.8326325509502465 MAE: 0.6676500690618903 R2: 0.01770824285088779 Elasticnet model (alpha=0.700000, l1_ratio=0.800000): RMSE: 0.8331830329685253 MAE: 0.6692142378162035 R2: 0.016408959758236752 Elasticnet model (alpha=0.800000, l1_ratio=0.800000): RMSE: 0.8330972295348316 MAE: 0.669813814205792 R2: 0.016611535037920344 Elasticnet model (alpha=0.900000, l1_ratio=0.800000): RMSE: 0.8330208354420413 MAE: 0.6704133670619602 R2: 0.016791878033996177 Elasticnet model (alpha=0.100000, l1_ratio=0.900000): RMSE: 0.735314956888905 MAE: 0.566974647785579 R2: 0.23390870203034675 Elasticnet model (alpha=0.200000, l1_ratio=0.900000): RMSE: 0.7613249071370938 MAE: 0.593613372674502 R2: 0.1787529818606436 Elasticnet model (alpha=0.300000, l1_ratio=0.900000): RMSE: 0.7940027723712206 MAE: 0.6284316436541582 R2: 0.10674024649047587 Elasticnet model (alpha=0.400000, l1_ratio=0.900000): RMSE: 0.831784893250733 MAE: 0.6647313794016759 R2: 0.019707259905588637 Elasticnet model (alpha=0.500000, l1_ratio=0.900000): RMSE: 0.8323747376136406 MAE: 0.6669171677143245 R2: 0.018316455219614114 Elasticnet model (alpha=0.600000, l1_ratio=0.900000): RMSE: 0.8332063354920289 MAE: 0.6690618761753936 R2: 0.01635394069773599 Elasticnet model (alpha=0.700000, l1_ratio=0.900000): RMSE: 0.8331078270287657 MAE: 0.6697360518827573 R2: 0.016586516302516174 Elasticnet model (alpha=0.800000, l1_ratio=0.900000): RMSE: 0.8330212125502486 MAE: 0.6704102143580977 R2: 0.016790987837928095 Elasticnet model (alpha=0.900000, l1_ratio=0.900000): RMSE: 0.8329464950658837 MAE: 0.6710843636018047 R2: 0.01696735695860563
### Informacje o przebieagach eksperymentu zostały zapisane w katalogu mlruns
! ls -l IUM_08/examples/mlruns/0
total 16 drwxrwxr-x 6 tomek tomek 4096 maj 2 17:07 15918a3901854356933736dfc0935807 drwxrwxr-x 6 tomek tomek 4096 maj 2 16:36 23ae1069b29e4955ac9f3536c71e7ac2 drwxrwxr-x 6 tomek tomek 4096 maj 2 17:07 b7ddb17a37404d7898e105afa5c20287 -rw-rw-r-- 1 tomek tomek 151 maj 2 16:36 meta.yaml
### Możemy je obejrzeć w przeglądarce uruchamiając interfejs webowy:
### (powinniśmy to wywołać w normalnej konsoli, w jupyter będziemy mieli zablokowany kernel)
! cd IUM_08/examples/; mlflow ui
[2021-05-10 12:21:16 +0200] [20029] [INFO] Starting gunicorn 20.1.0 [2021-05-10 12:21:16 +0200] [20029] [INFO] Listening at: http://127.0.0.1:5000 (20029) [2021-05-10 12:21:16 +0200] [20029] [INFO] Using worker: sync [2021-05-10 12:21:16 +0200] [20030] [INFO] Booting worker with pid: 20030 ^C [2021-05-10 12:22:32 +0200] [20029] [INFO] Handling signal: int [2021-05-10 12:22:32 +0200] [20030] [INFO] Worker exiting (pid: 20030)
Logowanie
logowania metryk i parametrów można dokonać m.in. poprzez wywołania Python-owego API:
mlflow.log_param()
imlflow.log_metric()
. Więcej dostępnych funkcji: linkwywołania te muszą nastąpić po wykonaniu
mlflow.start_run()
, najlepiej wewnątrz bloku:with mlflow.start_run(): #[...] mlflow.log_param("alpha", alpha) mlflow.log_param("l1_ratio", l1_ratio)
jest też możliwość automatycznego logwania dla wybranych bibliotek: https://mlflow.org/docs/latest/tracking.html#automatic-logging
MLflow Projects
- MLflow projects to zestaw konwencji i kilku narzędzi
- ułatwiają one uruchamianie eskperymentów
Konfiguracja projektu
- W pliku
MLproject
zapisuje się konfigurację projektu (specyfikacja) - Zawiera ona:
- odnośnik do środowiska, w którym ma być wywołany eksperyment szczegóły:
- nazwa obrazu Docker
- albo ścieżka do pliku conda.yaml definiującego środowisko wykonania Conda
- parametry, z którymi można wywołać eksperyment
- polecenia służące do wywołania eksperymentu
- odnośnik do środowiska, w którym ma być wywołany eksperyment szczegóły:
%%writefile IUM_08/examples/sklearn_elasticnet_wine/MLproject
name: tutorial
conda_env: conda.yaml #ścieżka do pliku conda.yaml z definicją środowiska
#docker_env:
# image: mlflow-docker-example-environment
entry_points:
main:
parameters:
alpha: {type: float, default: 0.5}
l1_ratio: {type: float, default: 0.1}
command: "python train.py {alpha} {l1_ratio}"
test:
parameters:
alpha: {type: cutoff, default: 0}
command: "python test.py {cutoff}"
Overwriting IUM_08/examples/sklearn_elasticnet_wine/MLproject
Środowisko Conda
- https://docs.conda.io
- Składnia plików conda.yaml definiujących środowisko: https://docs.conda.io/projects/conda/en/4.6.1/user-guide/tasks/manage-environments.html#create-env-file-manually
- Składnia YAML: przystępnie, oficjalnie
%%writefile IUM_08/examples/sklearn_elasticnet_wine/conda.yaml
name: tutorial
channels:
- defaults
dependencies:
- python=3.6 #Te zależności będą zainstalowane za pomocą conda isntall
- pip
- pip: #Te ząś za pomocą pip install
- scikit-learn==0.23.2
- mlflow>=1.0
Overwriting IUM_08/examples/sklearn_elasticnet_wine/conda.yaml
Środowisko docker
- zamiast środowiska Conda możemy również podać nazwę obrazu docker, w którym ma być wywołany eksperyment.
- obraz będzie szukany lokalnie a następnie na DockerHub, lub w innym repozytorium dockera
- składnia specyfikacji ścieżki jest taka sama jak w przypadki poleceń dockera, np. docker pull link
- Można również podać katalogi do podmontowania wewnątrz kontenera oraz wartości zmiennych środowiskowych do ustawienia w kontenerze:
docker_env: image: mlflow-docker-example-environment volumes: ["/local/path:/container/mount/path"] environment: [["NEW_ENV_VAR", "new_var_value"], "VAR_TO_COPY_FROM_HOST_ENVIRONMENT"]
Parametry
Specyfikacja parametrów w pliku MLproject pozwala na ich walidację i używanie wartości domyślnych
Dostępne typy:
- String
- Float - dowolna liczba (MLflow waliduje, czy podana wartość jest liczbą)
- Path - pozwala podawać ścieżki względne (przekształca je na bezwzlędne) do plików lokalnych albo do plików zdalnych (np. do s3://) - zostaną wtedy ściągnięte lokalnie
- URI - podobnie jak path, ale do rozproszonych systemów plików
-
parameter_name: {type: data_type, default: value} # Short syntax parameter_name: # Long syntax type: data_type default: value
Uruchamianie projektu
- Projekt możemy uruchomić przy pomocy polecenia
mlflow run
(dokumentacja) - Spowoduje to przygotowanie środowiska i uruchomienie eksperymentu wewnątrz środowiska
- domyślnie zostanie uruchomione polecenie zdefiniowane w "entry point"
main
. Żeby uruchomić inny "entry point", możemy użyć parametru-e
, np:mlflow run sklearn_elasticnet_wine -e test
!cd IUM_08/examples/; mlflow run sklearn_elasticnet_wine -P alpha=0.42
2021/05/10 12:39:32 INFO mlflow.utils.conda: === Creating conda environment mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29 === Collecting package metadata (repodata.json): done Solving environment: done Preparing transaction: done Verifying transaction: done Executing transaction: done Installing pip dependencies: / Ran pip subprocess with arguments: ['/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/bin/python', '-m', 'pip', 'install', '-U', '-r', '/home/tomek/AITech/repo/aitech-ium-private/IUM_08/examples/sklearn_elasticnet_wine/condaenv.xf9x7i2v.requirements.txt'] Pip subprocess output: Collecting scikit-learn==0.23.2 Using cached scikit_learn-0.23.2-cp36-cp36m-manylinux1_x86_64.whl (6.8 MB) Collecting mlflow>=1.0 Downloading mlflow-1.17.0-py3-none-any.whl (14.2 MB) Collecting joblib>=0.11 Using cached joblib-1.0.1-py3-none-any.whl (303 kB) Collecting scipy>=0.19.1 Using cached scipy-1.5.4-cp36-cp36m-manylinux1_x86_64.whl (25.9 MB) Requirement already satisfied: numpy>=1.13.3 in /home/tomek/.local/lib/python3.6/site-packages (from scikit-learn==0.23.2->-r /home/tomek/AITech/repo/aitech-ium-private/IUM_08/examples/sklearn_elasticnet_wine/condaenv.xf9x7i2v.requirements.txt (line 1)) (1.15.4) Collecting threadpoolctl>=2.0.0 Using cached threadpoolctl-2.1.0-py3-none-any.whl (12 kB) Collecting pandas Using cached pandas-1.1.5-cp36-cp36m-manylinux1_x86_64.whl (9.5 MB) Collecting pyyaml Using cached PyYAML-5.4.1-cp36-cp36m-manylinux1_x86_64.whl (640 kB) Collecting gunicorn Using cached gunicorn-20.1.0-py3-none-any.whl (79 kB) Collecting Flask Using cached Flask-1.1.2-py2.py3-none-any.whl (94 kB) Collecting alembic<=1.4.1 Using cached alembic-1.4.1-py2.py3-none-any.whl Collecting prometheus-flask-exporter Downloading prometheus_flask_exporter-0.18.2.tar.gz (22 kB) Collecting entrypoints Using cached entrypoints-0.3-py2.py3-none-any.whl (11 kB) Collecting databricks-cli>=0.8.7 Using cached databricks_cli-0.14.3-py3-none-any.whl Collecting requests>=2.17.3 Using cached requests-2.25.1-py2.py3-none-any.whl (61 kB) Collecting docker>=4.0.0 Using cached docker-5.0.0-py2.py3-none-any.whl (146 kB) Collecting sqlalchemy Downloading SQLAlchemy-1.4.14-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.5 MB) Collecting cloudpickle Using cached cloudpickle-1.6.0-py3-none-any.whl (23 kB) Collecting pytz Using cached pytz-2021.1-py2.py3-none-any.whl (510 kB) Collecting protobuf>=3.6.0 Downloading protobuf-3.16.0-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (1.0 MB) Collecting click>=7.0 Using cached click-7.1.2-py2.py3-none-any.whl (82 kB) Collecting sqlparse>=0.3.1 Using cached sqlparse-0.4.1-py3-none-any.whl (42 kB) Collecting querystring-parser Using cached querystring_parser-1.2.4-py2.py3-none-any.whl (7.9 kB) Collecting gitpython>=2.1.0 Using cached GitPython-3.1.14-py3-none-any.whl (159 kB) Collecting Mako Using cached Mako-1.1.4-py2.py3-none-any.whl (75 kB) Collecting python-editor>=0.3 Using cached python_editor-1.0.4-py3-none-any.whl (4.9 kB) Collecting python-dateutil Using cached python_dateutil-2.8.1-py2.py3-none-any.whl (227 kB) Collecting tabulate>=0.7.7 Using cached tabulate-0.8.9-py3-none-any.whl (25 kB) Requirement already satisfied: six>=1.10.0 in /home/tomek/.local/lib/python3.6/site-packages (from databricks-cli>=0.8.7->mlflow>=1.0->-r /home/tomek/AITech/repo/aitech-ium-private/IUM_08/examples/sklearn_elasticnet_wine/condaenv.xf9x7i2v.requirements.txt (line 2)) (1.12.0) Collecting websocket-client>=0.32.0 Downloading websocket_client-0.59.0-py2.py3-none-any.whl (67 kB) Collecting gitdb<5,>=4.0.1 Using cached gitdb-4.0.7-py3-none-any.whl (63 kB) Collecting smmap<5,>=3.0.1 Using cached smmap-4.0.0-py2.py3-none-any.whl (24 kB) Collecting idna<3,>=2.5 Using cached idna-2.10-py2.py3-none-any.whl (58 kB) Collecting chardet<5,>=3.0.2 Using cached chardet-4.0.0-py2.py3-none-any.whl (178 kB) Collecting urllib3<1.27,>=1.21.1 Using cached urllib3-1.26.4-py2.py3-none-any.whl (153 kB) Requirement already satisfied: certifi>=2017.4.17 in /media/tomek/Linux_data/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/site-packages (from requests>=2.17.3->mlflow>=1.0->-r /home/tomek/AITech/repo/aitech-ium-private/IUM_08/examples/sklearn_elasticnet_wine/condaenv.xf9x7i2v.requirements.txt (line 2)) (2020.12.5) Collecting greenlet!=0.4.17 Downloading greenlet-1.1.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (155 kB) Collecting importlib-metadata Using cached importlib_metadata-4.0.1-py3-none-any.whl (16 kB) Collecting itsdangerous>=0.24 Using cached itsdangerous-1.1.0-py2.py3-none-any.whl (16 kB) Collecting Werkzeug>=0.15 Using cached Werkzeug-1.0.1-py2.py3-none-any.whl (298 kB) Collecting Jinja2>=2.10.1 Using cached Jinja2-2.11.3-py2.py3-none-any.whl (125 kB) Collecting MarkupSafe>=0.23 Using cached MarkupSafe-1.1.1-cp36-cp36m-manylinux2010_x86_64.whl (32 kB) Requirement already satisfied: setuptools>=3.0 in /media/tomek/Linux_data/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/site-packages (from gunicorn->mlflow>=1.0->-r /home/tomek/AITech/repo/aitech-ium-private/IUM_08/examples/sklearn_elasticnet_wine/condaenv.xf9x7i2v.requirements.txt (line 2)) (52.0.0.post20210125) Collecting typing-extensions>=3.6.4 Using cached typing_extensions-3.10.0.0-py3-none-any.whl (26 kB) Collecting zipp>=0.5 Using cached zipp-3.4.1-py3-none-any.whl (5.2 kB) Collecting prometheus_client Using cached prometheus_client-0.10.1-py2.py3-none-any.whl (55 kB) Building wheels for collected packages: prometheus-flask-exporter Building wheel for prometheus-flask-exporter (setup.py): started Building wheel for prometheus-flask-exporter (setup.py): finished with status 'done' Created wheel for prometheus-flask-exporter: filename=prometheus_flask_exporter-0.18.2-py3-none-any.whl size=17399 sha256=84da5903cdaabc8f667b7b2e3d5f63a3021cab3d4f4fc1981d9d2a3ab5264738 Stored in directory: /home/tomek/.cache/pip/wheels/15/77/e8/3ca90b66243b0b58d5a5323a3da02cc8c5daf1de7a65141701 Successfully built prometheus-flask-exporter Installing collected packages: zipp, typing-extensions, MarkupSafe, Werkzeug, urllib3, smmap, Jinja2, itsdangerous, importlib-metadata, idna, greenlet, click, chardet, websocket-client, tabulate, sqlalchemy, requests, pytz, python-editor, python-dateutil, prometheus-client, Mako, gitdb, Flask, threadpoolctl, sqlparse, scipy, querystring-parser, pyyaml, protobuf, prometheus-flask-exporter, pandas, joblib, gunicorn, gitpython, entrypoints, docker, databricks-cli, cloudpickle, alembic, scikit-learn, mlflow Successfully installed Flask-1.1.2 Jinja2-2.11.3 Mako-1.1.4 MarkupSafe-1.1.1 Werkzeug-1.0.1 alembic-1.4.1 chardet-4.0.0 click-7.1.2 cloudpickle-1.6.0 databricks-cli-0.14.3 docker-5.0.0 entrypoints-0.3 gitdb-4.0.7 gitpython-3.1.14 greenlet-1.1.0 gunicorn-20.1.0 idna-2.10 importlib-metadata-4.0.1 itsdangerous-1.1.0 joblib-1.0.1 mlflow-1.17.0 pandas-1.1.5 prometheus-client-0.10.1 prometheus-flask-exporter-0.18.2 protobuf-3.16.0 python-dateutil-2.8.1 python-editor-1.0.4 pytz-2021.1 pyyaml-5.4.1 querystring-parser-1.2.4 requests-2.25.1 scikit-learn-0.23.2 scipy-1.5.4 smmap-4.0.0 sqlalchemy-1.4.14 sqlparse-0.4.1 tabulate-0.8.9 threadpoolctl-2.1.0 typing-extensions-3.10.0.0 urllib3-1.26.4 websocket-client-0.59.0 zipp-3.4.1 done # # To activate this environment, use # # $ conda activate mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29 # # To deactivate an active environment, use # # $ conda deactivate 2021/05/10 12:40:17 INFO mlflow.projects.utils: === Created directory /tmp/tmpgvcpfml8 for downloading remote URIs passed to arguments of type 'path' === 2021/05/10 12:40:17 INFO mlflow.projects.backend.local: === Running command 'source /home/tomek/miniconda3/bin/../etc/profile.d/conda.sh && conda activate mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29 1>&2 && python train.py 0.42 0.1' in run with ID 'b9b3795a2898495d95c650bafc0dcc76' === ERROR:__main__:Unable to download training & test CSV, check your internet connection. Error: <urlopen error [Errno 110] Connection timed out> Traceback (most recent call last): File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 1349, in do_open encode_chunked=req.has_header('Transfer-encoding')) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/http/client.py", line 1287, in request self._send_request(method, url, body, headers, encode_chunked) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/http/client.py", line 1333, in _send_request self.endheaders(body, encode_chunked=encode_chunked) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/http/client.py", line 1282, in endheaders self._send_output(message_body, encode_chunked=encode_chunked) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/http/client.py", line 1042, in _send_output self.send(msg) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/http/client.py", line 980, in send self.connect() File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/http/client.py", line 952, in connect (self.host,self.port), self.timeout, self.source_address) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/socket.py", line 724, in create_connection raise err File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/socket.py", line 713, in create_connection sock.connect(sa) TimeoutError: [Errno 110] Connection timed out During handling of the above exception, another exception occurred: Traceback (most recent call last): File "train.py", line 40, in <module> data = pd.read_csv(csv_url, sep=";") File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/site-packages/pandas/io/parsers.py", line 688, in read_csv return _read(filepath_or_buffer, kwds) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/site-packages/pandas/io/parsers.py", line 437, in _read filepath_or_buffer, encoding, compression File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/site-packages/pandas/io/common.py", line 183, in get_filepath_or_buffer req = urlopen(filepath_or_buffer) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/site-packages/pandas/io/common.py", line 137, in urlopen return urllib.request.urlopen(*args, **kwargs) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 223, in urlopen return opener.open(url, data, timeout) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 526, in open response = self._open(req, data) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 544, in _open '_open', req) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 504, in _call_chain result = func(*args) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 1377, in http_open return self.do_open(http.client.HTTPConnection, req) File "/home/tomek/miniconda3/envs/mlflow-5987e03d4dbaa5faa1a697bb113be9b9bdc39b29/lib/python3.6/urllib/request.py", line 1351, in do_open raise URLError(err) urllib.error.URLError: <urlopen error [Errno 110] Connection timed out> Traceback (most recent call last): File "train.py", line 47, in <module> train, test = train_test_split(data) NameError: name 'data' is not defined 2021/05/10 12:42:29 ERROR mlflow.cli: === Run (ID 'b9b3795a2898495d95c650bafc0dcc76') failed ===
Zadania [10p pkt] (do 16 V 12:00)
- Dodaj do swojego projektu logowanie parametrów i metryk za pomocą MLflow (polecenia
mlflow.log_param
imlflow.log_metric
- Dodaj plik MLProject definiujący polecenia do trenowania i testowania, ich parametry wywołania oraz środowisko (użyj zdefiniowanego wcześniej obrazu Docker)