2022-11-18 15:00:34 +01:00
class as_cover :
2024-06-10 21:50:09 +02:00
def __init__ ( self , C , cover_template , list_of_fcts , branch_points = [ ] , prec = 10 ) :
2022-11-18 15:00:34 +01:00
self . quotient = C
2024-06-11 13:29:05 +02:00
self . cover_template = cover_template
2022-11-18 15:00:34 +01:00
self . functions = list_of_fcts
self . height = len ( list_of_fcts )
F = C . base_ring
self . base_ring = F
p = C . characteristic
self . characteristic = p
self . prec = prec
2022-11-24 18:59:07 +01:00
#group acting
2024-06-10 21:50:09 +02:00
self . height = cover_template . height
self . group = cover_template . group
2022-11-24 18:59:07 +01:00
#########
2022-11-18 15:00:34 +01:00
f = C . polynomial
m = C . exponent
r = f . degree ( )
delta = GCD ( m , r )
self . nb_of_pts_at_infty = delta
2023-03-08 14:54:07 +01:00
self . branch_points = list ( range ( delta ) ) + branch_points
2022-11-18 15:00:34 +01:00
Rxy . < x , y > = PolynomialRing ( F , 2 )
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
2024-09-27 15:18:38 +02:00
Rzf , zgen , fgen , xgen , ygen = cover_template . fct_field
2023-03-08 14:54:07 +01:00
all_x_series = { }
all_y_series = { }
all_z_series = { }
all_dx_series = { }
all_jumps = { }
2022-11-18 15:00:34 +01:00
2023-03-08 14:54:07 +01:00
for pt in self . branch_points :
x_series = superelliptic_function ( C , x ) . expansion ( pt = pt , prec = prec )
y_series = superelliptic_function ( C , y ) . expansion ( pt = pt , prec = prec )
2022-11-18 15:00:34 +01:00
z_series = [ ]
jumps = [ ]
n = len ( list_of_fcts )
2023-03-08 14:54:07 +01:00
list_of_power_series = [ g . expansion ( pt = pt , prec = prec ) for g in list_of_fcts ]
for j in range ( n ) :
2024-06-10 21:50:09 +02:00
####
2024-06-11 19:48:37 +02:00
#
2024-12-20 12:12:21 +01:00
power_series = Rzf ( cover_template . fcts [ j ] ) . subs ( { zgen [ i ] : z_series [ i ] for i in range ( j ) } | { zgen [ i ] : 0 for i in range ( j , n ) } | { fgen [ i ] : list_of_power_series [ i ] for i in range ( n ) } | { xgen : x_series , ygen : y_series } )
2024-06-10 21:50:09 +02:00
####
2022-11-18 15:00:34 +01:00
jump , correction , t_old , z = artin_schreier_transform ( power_series , prec = prec )
x_series = x_series ( t = t_old )
y_series = y_series ( t = t_old )
z_series = [ zi ( t = t_old ) for zi in z_series ]
z_series + = [ z ]
jumps + = [ jump ]
list_of_power_series = [ g ( t = t_old ) for g in list_of_power_series ]
2023-03-08 14:54:07 +01:00
all_jumps [ pt ] = jumps
all_x_series [ pt ] = x_series
all_y_series [ pt ] = y_series
all_z_series [ pt ] = z_series
all_dx_series [ pt ] = x_series . derivative ( )
2022-11-18 15:00:34 +01:00
self . jumps = all_jumps
2022-12-23 13:52:17 +01:00
self . x_series = all_x_series
self . y_series = all_y_series
self . z_series = all_z_series
self . dx_series = all_dx_series
2022-12-19 14:37:14 +01:00
##############
#Function field
variable_names = ' x, y '
for i in range ( n ) :
variable_names + = ' , z ' + str ( i )
Rxyz = PolynomialRing ( F , n + 2 , variable_names )
x , y = Rxyz . gens ( ) [ : 2 ]
z = Rxyz . gens ( ) [ 2 : ]
RxyzQ = FractionField ( Rxyz )
self . fct_field = ( RxyzQ , Rxyz , x , y , z )
2022-12-23 13:52:17 +01:00
self . x = as_function ( self , x )
self . y = as_function ( self , y )
2023-03-08 14:54:07 +01:00
self . z = [ as_function ( self , z [ j ] ) for j in range ( n ) ]
2022-12-23 13:52:17 +01:00
self . dx = as_form ( self , 1 )
2023-03-08 14:54:07 +01:00
self . one = as_function ( self , 1 )
2024-09-27 15:18:38 +02:00
Rzf , zgen , fgen , xgen , ygen = cover_template . fct_field
2024-12-20 12:12:21 +01:00
subs_fs = { zgen [ i ] : z [ i ] for i in range ( n ) } | { fgen [ i ] : RxyzQ ( list_of_fcts [ i ] . function ) for i in range ( n ) } | { xgen : x , ygen : y }
2024-06-11 13:29:05 +02:00
self . rhs = [ RxyzQ ( cover_template . fcts [ i ] . subs ( subs_fs ) ) for i in range ( n ) ]
#####
##### We compute now the differentials dz[i]
y_super = superelliptic_function ( C , y )
dy_super = y_super . diffn ( ) . form
dz = [ ]
for i in range ( n ) :
aux_fct = self . rhs [ i ]
result = 0
for j in range ( i ) :
result + = aux_fct . derivative ( z [ j ] ) * dz [ j ]
result + = aux_fct . derivative ( x )
result + = aux_fct . derivative ( y ) * dy_super
dz + = [ - result ]
self . dz = dz
2024-06-12 13:23:24 +02:00
2022-11-18 15:00:34 +01:00
def __repr__ ( self ) :
n = self . height
p = self . characteristic
2024-06-11 20:57:12 +02:00
result = " ( " + self . group . short_name + " ) "
2024-06-11 13:29:05 +02:00
result + = " -cover of " + str ( self . quotient ) + " with the equations: \n "
2022-11-18 15:00:34 +01:00
for i in range ( n ) :
2024-06-11 13:29:05 +02:00
result + = ' z ' + str ( i ) + ' ^p - z ' + str ( i ) + ' = '
aux = str ( self . cover_template . fcts [ i ] )
for t in range ( n ) :
aux = aux . replace ( " f " + str ( t ) , " ( " + str ( self . functions [ t ] ) + " ) " )
result + = aux + ' \n '
2022-11-18 15:00:34 +01:00
return result
def genus ( self ) :
jumps = self . jumps
gY = self . quotient . genus ( )
n = self . height
p = self . characteristic
2024-06-13 12:35:58 +02:00
return p ^ n * ( gY - 1 ) + 1 + 1 / 2 * sum ( self . exponent_of_different ( place ) * len ( self . fiber ( place ) ) for place in self . branch_points )
2022-11-18 15:00:34 +01:00
2023-02-23 12:26:25 +01:00
def exponent_of_different ( self , place = 0 ) :
2022-11-18 15:00:34 +01:00
jumps = self . jumps
n = self . height
p = self . characteristic
2024-06-13 12:35:58 +02:00
dd = [ 0 ]
for i in range ( 1 , n + 1 ) :
if jumps [ place ] [ i - 1 ] == 0 :
dd + = [ dd [ i - 1 ] ]
else :
dd + = [ ( jumps [ place ] [ i - 1 ] + 1 ) * ( p - 1 ) + p * dd [ i - 1 ] ]
return dd [ n ]
2022-11-18 15:00:34 +01:00
2023-02-23 12:26:25 +01:00
def exponent_of_different_prim ( self , place = 0 ) :
2022-11-18 15:00:34 +01:00
jumps = self . jumps
n = self . height
p = self . characteristic
2024-06-13 12:35:58 +02:00
dd = [ 0 ]
for i in range ( 1 , n + 1 ) :
if jumps [ place ] [ i - 1 ] == 0 :
dd + = [ dd [ i - 1 ] ]
else :
dd + = [ jumps [ place ] [ i - 1 ] * ( p - 1 ) + p * dd [ i - 1 ] ]
return dd [ n ]
2022-11-18 15:00:34 +01:00
2024-06-13 18:24:20 +02:00
def exponent_of_different_bis ( self , place = 0 ) :
jumps = self . jumps
n = self . height
p = self . characteristic
dd = [ 0 ]
for i in range ( 1 , n + 1 ) :
if jumps [ place ] [ i - 1 ] == 0 :
dd + = [ dd [ i - 1 ] ]
else :
dd + = [ ( jumps [ place ] [ i - 1 ] - 1 ) * ( p - 1 ) + p * dd [ i - 1 ] ]
return dd [ n ]
2022-11-18 15:00:34 +01:00
def holomorphic_differentials_basis ( self , threshold = 8 ) :
from itertools import product
2022-12-23 13:52:17 +01:00
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
dx_series = self . dx_series
2022-11-18 15:00:34 +01:00
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
2022-12-19 14:37:14 +01:00
RxyzQ , Rxyz , x , y , z = self . fct_field
2022-11-18 15:00:34 +01:00
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ]
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
eta = as_form ( self , x ^ i * prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) / y ^ j )
2023-03-08 14:54:07 +01:00
eta_exp = eta . expansion ( pt = self . branch_points [ 0 ] )
2022-11-18 15:00:34 +01:00
S + = [ ( eta , eta_exp ) ]
2024-02-12 20:06:26 +01:00
forms = holomorphic_combinations ( S )
2022-11-18 15:00:34 +01:00
2024-11-26 21:33:56 +01:00
for i in range ( delta ) :
for g in self . fiber ( place = i ) :
if i != 0 or g != self . group . one :
forms = [ ( omega , omega . group_action ( g ) . expansion_at_infty ( i ) ) for omega in forms ]
forms = holomorphic_combinations ( forms )
2022-11-18 15:00:34 +01:00
if len ( forms ) < self . genus ( ) :
2023-03-08 14:54:07 +01:00
print ( " I haven ' t found all forms, only " , len ( forms ) , " of " , self . genus ( ) )
2024-06-13 12:35:58 +02:00
raise ValueError ( " Increase threshold. " )
#return holomorphic_differentials_basis(self, threshold = threshold + 1)
2022-11-18 15:00:34 +01:00
if len ( forms ) > self . genus ( ) :
2024-11-26 21:33:56 +01:00
print ( len ( forms ) , forms )
2023-09-23 15:33:58 +02:00
raise ValueError ( " Increase precision. " )
2025-01-02 18:17:52 +01:00
forms = [ om . reduce ( ) for om in forms ]
2022-11-18 15:00:34 +01:00
return forms
2023-02-23 12:26:25 +01:00
def cartier_matrix ( self , prec = 50 ) :
g = self . genus ( )
F = self . base_ring
M = matrix ( F , g , g )
for i , omega in enumerate ( self . holomorphic_differentials_basis ( ) ) :
M [ : , i ] = vector ( omega . cartier ( ) . coordinates ( ) )
return M
2022-11-18 15:00:34 +01:00
def at_most_poles ( self , pole_order , threshold = 8 ) :
""" Find fcts with pole order in infty ' s at most pole_order. Threshold gives a bound on powers of x in the function.
If you suspect that you haven ' t found all the functions, you may increase it. " " "
from itertools import product
2022-12-23 13:52:17 +01:00
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
2022-11-18 15:00:34 +01:00
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
2022-12-19 14:37:14 +01:00
RxyzQ , Rxyz , x , y , z = self . fct_field
2023-09-22 08:45:48 +02:00
F = C . base_ring
2022-11-18 15:00:34 +01:00
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ]
RQxyz = FractionField ( Rxyz )
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
eta = as_function ( self , x ^ i * prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) * y ^ j )
eta_exp = eta . expansion_at_infty ( )
S + = [ ( eta , eta_exp ) ]
forms = holomorphic_combinations_fcts ( S , pole_order )
for i in range ( 1 , delta ) :
2023-02-23 12:26:25 +01:00
forms = [ ( omega , omega . expansion_at_infty ( place = i ) ) for omega in forms ]
2022-11-18 15:00:34 +01:00
forms = holomorphic_combinations_fcts ( forms , pole_order )
return forms
def magical_element ( self , threshold = 8 ) :
list_of_elts = self . at_most_poles ( self . exponent_of_different_prim ( ) , threshold )
result = [ ]
for a in list_of_elts :
if a . trace ( ) . function != 0 :
result + = [ a ]
return result
def pseudo_magical_element ( self , threshold = 8 ) :
list_of_elts = self . at_most_poles ( self . exponent_of_different ( ) , threshold )
result = [ ]
for a in list_of_elts :
if a . trace ( ) . function != 0 :
result + = [ a ]
return result
def at_most_poles_forms ( self , pole_order , threshold = 8 ) :
""" Find forms with pole order in all the points at infty equat at most to pole_order. Threshold gives a bound on powers of x in the form.
If you suspect that you haven ' t found all the functions, you may increase it. " " "
from itertools import product
2022-12-23 13:52:17 +01:00
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
2022-11-18 15:00:34 +01:00
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
2022-12-19 14:37:14 +01:00
RxyzQ , Rxyz , x , y , z = self . fct_field
2022-11-18 15:00:34 +01:00
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ]
RQxyz = FractionField ( Rxyz )
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
eta = as_form ( self , x ^ i * prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) / y ^ j )
eta_exp = eta . expansion_at_infty ( )
S + = [ ( eta , eta_exp ) ]
forms = holomorphic_combinations_forms ( S , pole_order )
2023-03-08 14:54:07 +01:00
for pt in self . branch_points [ 1 : ] :
forms = [ ( omega , omega . expansion ( pt = pt ) ) for omega in forms ]
2022-11-18 15:00:34 +01:00
forms = holomorphic_combinations_forms ( forms , pole_order )
return forms
2022-11-24 18:59:07 +01:00
2024-06-12 13:23:24 +02:00
def uniformizer ( self , place = 0 , threshold = 10 ) :
2023-02-23 12:26:25 +01:00
''' Return uniformizer of curve self at place-th place at infinity. '''
2022-11-24 18:59:07 +01:00
p = self . characteristic
n = self . height
2022-12-19 14:37:14 +01:00
F = self . base_ring
2024-06-12 13:23:24 +02:00
list_of_fcts = self . at_most_poles ( threshold )
2024-06-12 18:13:49 +02:00
list_of_fcts2 = self . z + [ self . x , self . y ]
2022-11-24 18:59:07 +01:00
for f1 in list_of_fcts :
2024-06-12 18:13:49 +02:00
for f2 in list_of_fcts2 :
2023-02-23 12:26:25 +01:00
d , a , b = xgcd ( f1 . valuation ( place ) , f2 . valuation ( place ) )
2022-11-24 18:59:07 +01:00
if d == 1 :
return f1 ^ a * f2 ^ b
2024-06-12 13:23:24 +02:00
raise ValueError ( " Increase threshold. " )
2024-06-12 18:13:49 +02:00
def quasiuniformizer ( self , place = 0 , threshold = 10 ) :
''' Return an element with valuation coprime to p. '''
p = self . characteristic
n = self . height
F = self . base_ring
2024-12-20 12:12:21 +01:00
rr_space = self . at_most_poles ( threshold , threshold = threshold ) #there are two thresholds, how to pick them? we picked sqrt randomly
2024-06-12 18:13:49 +02:00
list_of_fcts = [ ff for ff in rr_space if ff . valuation ( place ) % p != 0 ]
list_of_fcts2 = [ len ( str ( ff ) ) for ff in list_of_fcts ]
i_min = list_of_fcts2 . index ( min ( list_of_fcts2 ) )
result = list_of_fcts . pop ( i_min )
flag = 1
while flag == 1 :
flag = 0
for g in self . group . elts :
if result . group_action ( g ) == result and g != self . group . one :
flag = 1
if flag == 1 :
list_of_fcts2 = [ len ( str ( ff ) ) for ff in list_of_fcts ]
i_min = list_of_fcts2 . index ( min ( list_of_fcts2 ) )
result = list_of_fcts . pop ( i_min )
return result
2022-11-18 15:00:34 +01:00
2024-06-12 13:23:24 +02:00
def stabilizer ( self , place = 0 ) :
result = [ ]
for g in self . group . elts :
flag = 1
for i in range ( self . height ) :
if self . z [ i ] . valuation ( place = place ) > 0 :
fct = self . z [ i ]
elif self . z [ i ] . valuation ( place = place ) < 0 :
fct = self . one / self . z [ i ]
if fct . group_action ( g ) . valuation ( place = place ) < = 0 :
flag = 0
if flag :
result + = [ g ]
return result
def fiber ( self , place = 0 ) :
' Gives representatives for the quotient G/G_P for given place. Those are in bijection with the fiber. '
2024-10-21 21:43:37 +02:00
result = [ self . group . one ]
2024-06-12 13:23:24 +02:00
p = self . characteristic
2024-06-13 12:35:58 +02:00
G = self . group
2024-06-12 13:23:24 +02:00
H = self . stabilizer ( place = place )
for g in self . group . elts :
2024-10-21 21:44:13 +02:00
if g != self . group . one :
2024-06-25 11:27:31 +02:00
flag = 1
for v in result :
if ( G . elt ( g ) * ( - G . elt ( v ) ) ) . as_tuple in H :
flag = 0
if flag :
result + = [ g ]
2024-06-12 13:23:24 +02:00
return result
2024-06-12 18:13:49 +02:00
def ith_ramification_gp ( self , i , place = 0 , quasiuniformizer = 0 , threshold = 20 ) :
2022-11-24 18:59:07 +01:00
''' Find ith ramification group at place at infty of nb place. '''
2024-06-11 13:29:05 +02:00
G = self . group . elts
2024-06-12 18:13:49 +02:00
p = self . characteristic
2022-11-24 18:59:07 +01:00
Gi = [ G [ 0 ] ]
2024-06-12 18:13:49 +02:00
# list_of_fcts = self.z #[self.one/zz for zz in AS.z if zz.valuation(place) < 0]
# list_of_fcts += [zz^2 for zz in self.z]
if isinstance ( quasiuniformizer , int ) or isinstance ( quasiuniformizer , Integer ) :
t = self . quasiuniformizer ( place , threshold = threshold )
else :
t = quasiuniformizer
2022-11-24 18:59:07 +01:00
for g in G :
if g != G [ 0 ] :
tg = t . group_action ( g )
v = ( tg - t ) . valuation ( place )
2024-06-12 18:13:49 +02:00
if v > = i + t . valuation ( place ) :
2022-11-24 18:59:07 +01:00
Gi + = [ g ]
return Gi
2024-06-12 18:13:49 +02:00
def ramification_jumps ( self , place = 0 , quasiuniformizer = 0 , threshold = 20 ) :
2022-11-24 18:59:07 +01:00
''' Return list of lower ramification jumps at at place at infty of nb place. '''
2024-06-12 18:13:49 +02:00
G = self . stabilizer ( place = place )
p = self . characteristic
Gi = [ G [ 0 ] ]
# list_of_fcts = self.z #[self.one/zz for zz in AS.z if zz.valuation(place) < 0]
# list_of_fcts += [zz^2 for zz in self.z]
if isinstance ( quasiuniformizer , int ) or isinstance ( quasiuniformizer , Integer ) :
t = self . quasiuniformizer ( place , threshold = threshold )
else :
t = quasiuniformizer
result = [ ]
2022-11-24 18:59:07 +01:00
i = 0
while len ( G ) > 1 :
2024-06-12 13:23:24 +02:00
Gi = [ G [ 0 ] ]
for g in G :
if g != G [ 0 ] :
tg = t . group_action ( g )
v = ( tg - t ) . valuation ( place )
2024-06-12 18:13:49 +02:00
if v > = i + t . valuation ( place ) :
2024-06-12 13:23:24 +02:00
Gi + = [ g ]
2022-11-24 18:59:07 +01:00
if len ( Gi ) < len ( G ) :
2024-06-12 18:13:49 +02:00
result + = [ i - 1 ]
2022-11-24 18:59:07 +01:00
G = Gi
i + = 1
2024-06-12 18:13:49 +02:00
return result
2023-02-23 12:26:25 +01:00
2024-06-13 12:35:58 +02:00
def upper_ramification_jumps ( self , place = 0 , quasiuniformizer = 0 , threshold = 20 ) :
lj = self . ramification_jumps ( place = place , quasiuniformizer = quasiuniformizer , threshold = threshold )
result = [ ]
result + = [ lj [ 0 ] ]
for j in range ( 1 , len ( lj ) ) :
aux = len ( self . stabilizer ( place = place ) ) / / len ( self . ith_ramification_gp ( lj [ j ] , place = place , quasiuniformizer = quasiuniformizer , threshold = threshold ) )
result + = [ result [ j - 1 ] + ( lj [ j ] - lj [ j - 1 ] ) / / aux ]
return result
2023-02-23 12:26:25 +01:00
def a_number ( self ) :
g = self . genus ( )
return g - self . cartier_matrix ( ) . rank ( )
2022-12-19 14:37:14 +01:00
2024-01-03 18:26:21 +01:00
def cohomology_of_structure_sheaf_basis ( self , holo_basis = 0 , threshold = 8 ) :
if holo_basis == 0 :
holo_basis = self . holomorphic_differentials_basis ( threshold = threshold )
2022-12-19 14:37:14 +01:00
from itertools import product
2022-12-23 13:52:17 +01:00
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
2022-12-19 14:37:14 +01:00
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
RxyzQ , Rxyz , x , y , z = self . fct_field
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
result_fcts = [ ]
V = VectorSpace ( F , self . genus ( ) )
S = V . subspace ( [ ] )
RQxyz = FractionField ( Rxyz )
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
i = 0
while len ( result_fcts ) < self . genus ( ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
f = as_function ( self , prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) / x ^ i * y ^ j )
2024-01-03 18:26:21 +01:00
f_products = [ omega . serre_duality_pairing ( f ) for omega in holo_basis ]
2022-12-19 14:37:14 +01:00
if vector ( f_products ) not in S :
S = S + V . subspace ( [ V ( f_products ) ] )
result_fcts + = [ f ]
i + = 1
return result_fcts
2022-12-19 15:19:50 +01:00
2025-01-02 18:29:37 +01:00
def lift_to_de_rham ( self , fct , basis = 0 , threshold = 30 ) :
2022-12-19 15:19:50 +01:00
''' Given function fct, find form eta regular on affine part such that eta - d(fct) is regular in infty. (Works for one place at infty now) '''
from itertools import product
2022-12-23 13:52:17 +01:00
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
dx_series = self . dx_series
2022-12-22 10:14:40 +01:00
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
2022-12-19 15:19:50 +01:00
m = C . exponent
r = C . polynomial . degree ( )
2022-12-22 10:14:40 +01:00
RxyzQ , Rxyz , x , y , z = self . fct_field
2022-12-19 15:19:50 +01:00
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ( fct . diffn ( ) , fct . diffn ( ) . expansion_at_infty ( ) ) ]
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
2025-01-02 18:29:37 +01:00
if basis == 0 :
holo = self . holomorphic_differentials_basis ( threshold = threshold )
else :
holo = basis
2022-12-19 15:19:50 +01:00
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
2024-01-10 18:05:29 +01:00
eta = as_form ( self , x ^ i * prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) / y ^ j )
2022-12-19 15:19:50 +01:00
eta_exp = eta . expansion_at_infty ( )
S + = [ ( eta , eta_exp ) ]
2025-01-02 18:29:37 +01:00
S = holomorphic_combinations ( S )
########
for i in range ( delta ) :
for g in self . fiber ( place = i ) :
if i != 0 or g != self . group . one :
S = [ ( omega , omega . group_action ( g ) . expansion_at_infty ( place = i ) ) for omega in S ]
S = holomorphic_combinations ( S )
######
if len ( S ) < = self . genus ( ) :
2022-12-22 10:14:40 +01:00
raise ValueError ( " Increase threshold! " )
2025-01-02 18:29:37 +01:00
for omega in S :
2022-12-22 10:14:40 +01:00
for a in F :
2024-01-10 18:05:29 +01:00
if ( a * omega + fct . diffn ( ) ) . is_regular_on_U0 ( ) :
2022-12-23 13:52:17 +01:00
return a * omega + fct . diffn ( )
2022-12-22 10:14:40 +01:00
raise ValueError ( " Unknown. " )
2024-06-10 19:55:49 +02:00
def lift_to_de_rham_form ( self , eta , threshold = 20 ) :
''' Given form eta regular on affine part find fct such that eta - d(fct) is regular in infty. (Works for one place at infty now) '''
from itertools import product
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
dx_series = self . dx_series
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
RxyzQ , Rxyz , x , y , z = self . fct_field
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ( eta , eta . expansion_at_infty ( ) ) ]
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
ff = as_function ( self , prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) / x ^ i * y ^ j )
ff_exp = ff . diffn ( ) . expansion_at_infty ( )
if ff_exp != 0 * ff_exp :
S + = [ ( ff , ff_exp ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
ff = as_function ( self , prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) * x ^ i * y ^ j )
ff_exp = ff . diffn ( ) . expansion_at_infty ( )
if ff_exp != 0 * ff_exp :
S + = [ ( ff , ff_exp ) ]
forms = holomorphic_combinations_mixed ( S )
if len ( forms ) < = self . genus ( ) :
raise ValueError ( " Increase threshold! " )
result = [ ]
for ff in forms :
if ff [ 0 ] != 0 * self . dx :
result + = [ as_cech ( self , ff [ 0 ] , - ff [ 1 ] ) ]
return result
raise ValueError ( " Unknown. " )
2022-12-19 15:19:50 +01:00
2024-01-03 18:26:21 +01:00
def de_rham_basis ( self , holo_basis = 0 , cohomology_basis = 0 , threshold = 30 ) :
if holo_basis == 0 :
holo_basis = self . holomorphic_differentials_basis ( threshold = threshold )
if cohomology_basis == 0 :
cohomology_basis = self . cohomology_of_structure_sheaf_basis ( holo_basis = holo_basis , threshold = threshold )
2022-12-19 15:19:50 +01:00
result = [ ]
2024-01-03 18:26:21 +01:00
for omega in holo_basis :
2022-12-22 14:44:57 +01:00
result + = [ as_cech ( self , omega , as_function ( self , 0 ) ) ]
2024-01-03 18:26:21 +01:00
for f in cohomology_basis :
2025-01-02 18:29:37 +01:00
omega = self . lift_to_de_rham ( f , basis = holo_basis , threshold = threshold )
2022-12-22 10:14:40 +01:00
result + = [ as_cech ( self , omega , f ) ]
return result
2022-12-19 14:37:14 +01:00
2024-06-11 19:48:37 +02:00
def group_action_matrices_holo ( AS , basis = 0 , threshold = 10 ) :
n = AS . height
if basis == 0 :
basis = AS . holomorphic_differentials_basis ( threshold = threshold )
F = AS . base_ring
return as_group_action_matrices ( F , basis , AS . group . gens , basis = basis )
2024-11-26 21:33:56 +01:00
def group_action_matrices_poly ( AS , mult , basis = 0 , threshold = 10 ) :
n = AS . height
if basis == 0 :
basis = AS . holo_polydifferentials_basis ( mult = mult , threshold = threshold )
F = AS . base_ring
return as_group_action_matrices ( F , basis , AS . group . gens , basis = basis )
2024-06-11 19:48:37 +02:00
def group_action_matrices_dR ( AS , basis = 0 , threshold = 8 ) :
n = AS . height
2024-12-20 12:12:21 +01:00
F = AS . base_ring
2024-06-11 19:48:37 +02:00
if basis == 0 :
holo_basis = AS . holomorphic_differentials_basis ( threshold = threshold )
str_basis = AS . cohomology_of_structure_sheaf_basis ( holo_basis = holo_basis , threshold = threshold )
dr_basis = AS . de_rham_basis ( holo_basis = holo_basis , cohomology_basis = str_basis , threshold = threshold )
basis = [ holo_basis , str_basis , dr_basis ]
return as_group_action_matrices ( F , basis [ 2 ] , AS . group . gens , basis = basis )
def group_action_matrices_log_holo ( AS ) :
n = AS . height
F = AS . base_ring
2024-06-13 18:24:20 +02:00
return as_group_action_matrices ( F , AS . at_most_poles_forms ( 1 ) , AS . group . gens , basis = AS . at_most_poles_forms ( 1 ) )
def riemann_roch_space ( self , pole_orders , threshold = 8 ) :
""" Find fcts with pole order in infty ' s at most pole_order from the given dictionary. The keys of the dictionary are pairs (place_at_infty, group element). The items are the poles orders at those places.
Threshold gives a bound on powers of x in the function . If you suspect that you haven ' t found all the functions, you may increase it. " " "
from itertools import product
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
RxyzQ , Rxyz , x , y , z = self . fct_field
F = C . base_ring
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ]
RQxyz = FractionField ( Rxyz )
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
eta = as_function ( self , x ^ i * prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) * y ^ j )
eta_exp = eta . expansion_at_infty ( )
S + = [ ( eta , eta_exp ) ]
forms = holomorphic_combinations_fcts ( S , pole_orders [ ( 0 , self . group . one ) ] )
for i in range ( delta ) :
for g in self . fiber ( place = i ) :
if i != 0 or g != self . group . one :
forms = [ ( omega , omega . group_action ( g ) . expansion_at_infty ( place = i ) ) for omega in forms ]
forms = holomorphic_combinations_fcts ( forms , pole_orders [ ( i , g ) ] )
return forms
def riemann_roch_space_forms ( self , pole_orders , threshold = 8 ) :
""" Find fcts with pole order in infty ' s at most pole_order from the given dictionary. The keys of the dictionary are pairs (place_at_infty, group element). The items are the poles orders at those places.
Threshold gives a bound on powers of x in the function . If you suspect that you haven ' t found all the functions, you may increase it. " " "
from itertools import product
x_series = self . x_series
y_series = self . y_series
z_series = self . z_series
delta = self . nb_of_pts_at_infty
p = self . characteristic
n = self . height
prec = self . prec
C = self . quotient
F = self . base_ring
m = C . exponent
r = C . polynomial . degree ( )
RxyzQ , Rxyz , x , y , z = self . fct_field
F = C . base_ring
Rt . < t > = LaurentSeriesRing ( F , default_prec = prec )
#Tworzymy zbiór S form z^i x^j y^k dx/y o waluacji >= waluacja z^(p-1)*dx/y
S = [ ]
RQxyz = FractionField ( Rxyz )
pr = [ list ( GF ( p ) ) for _ in range ( n ) ]
for i in range ( 0 , threshold * r ) :
for j in range ( 0 , m ) :
for k in product ( * pr ) :
2024-06-25 11:27:31 +02:00
eta = as_form ( self , x ^ i * prod ( z [ i1 ] ^ ( k [ i1 ] ) for i1 in range ( n ) ) / y ^ j )
2024-06-13 18:24:20 +02:00
eta_exp = eta . expansion_at_infty ( )
S + = [ ( eta , eta_exp ) ]
2024-06-25 11:27:31 +02:00
forms = holomorphic_combinations_forms ( S , pole_orders [ ( 0 , self . group . one ) ] )
2024-06-13 18:24:20 +02:00
for i in range ( delta ) :
for g in self . fiber ( place = i ) :
if i != 0 or g != self . group . one :
forms = [ ( omega , omega . group_action ( g ) . expansion_at_infty ( place = i ) ) for omega in forms ]
forms = holomorphic_combinations_forms ( forms , pole_orders [ ( i , g ) ] )
return forms