7.4 KiB
7.4 KiB
Theory
Let $C : y^m = f(x)$. Then:
the basis of $H^0(C, \Omega_{C/k})$ is given by: $$x^{i-1} dx/y^j,$$ where $1 \le i \le r-1$, $1 \le j \le m-1$, $-mi + rj \ge \delta$ and $\delta := GCD(m, r)$, $r := \deg f$.
# The program computes the basis of holomorphic differentials of y^m = f(x) in char p.
# The coefficient j means that we compute the j-th eigenpart, i.e.
# forms y^j * f(x) dx. Output is [f(x), 0]
def baza_holo(m, f, j, p):
R.<x> = PolynomialRing(GF(p))
f = R(f)
r = f.degree()
delta = GCD(m, r)
baza = {}
k = 0
for i in range(1, r):
if (r*j - m*i >= delta):
baza[k] = [x^(i-1), R(0)]
k = k+1
return baza
# The program computes the basis of de Rham cohomology of y^m = f(x) in char p.
# We treat them as pairs [omega, f], where omega is regular on the affine part
# and omega - df is regular on the second atlas.
# The coefficient j means that we compute the j-th eigenpart, i.e.
# [y^j * f(x) dx, g(x)/y^j]. Output is [f(x), g(x)]
def baza_dr(m, f, j, p):
R.<x> = PolynomialRing(GF(p))
f = R(f)
r = f.degree()
delta = GCD(m, r)
baza = {}
holo = baza_holo(m, f, j, p)
for k in range(0, len(holo)):
baza[k] = holo[k]
k = len(baza)
for i in range(1, r):
if (r*(m-j) - m*i >= delta):
s = R(m-j)*R(x)*R(f.derivative()) - R(m)*R(i)*f
psi = R(obciecie(s, i, p))
baza[k] = [psi, R(m)/x^i]
k = k+1
return baza
#auxiliary programs
def stopnie_bazy_holo(m, f, j, p):
baza = baza_holo(m, f, j, p)
stopnie = {}
for k in range(0, len(baza)):
stopnie[k] = baza[k][0].degree()
return stopnie
def stopnie_bazy_dr(m, f, j, p):
baza = baza_dr(m, f, j, p)
stopnie = {}
for k in range(0, len(baza)):
stopnie[k] = baza[k][0].degree()
return stopnie
def stopnie_drugiej_wspolrzednej_bazy_dr(m, f, j, p):
baza = baza_dr(m, f, j, p)
stopnie = {}
for k in range(0, len(baza)):
if baza[k][1] != 0:
stopnie[k] = baza[k][1].denominator().degree()
return stopnie
def obciecie(f, i, p):
R.<x> = PolynomialRing(GF(p))
f = R(f)
coeff = f.coefficients(sparse = false)
return sum(x^(j-i-1) * coeff[j] for j in range(i+1, f.degree() + 1))
#Any element [f dx, g] is represented as a combination of the basis vectors.
def zapis_w_bazie_dr(elt, m, f, j, p):
R.<x> = PolynomialRing(GF(p))
f = R(f)
r = f.degree()
delta = GCD(m, r)
baza = baza_dr(m, f, j, p)
wymiar = len(baza)
zapis = vector([GF(p)(0) for i in baza])
stopnie = stopnie_bazy_dr(m, f, j, p)
inv_stopnie = {v: k for k, v in stopnie.items()}
stopnie_holo = stopnie_bazy_holo(m, f, j, p)
inv_stopnie_holo = {v: k for k, v in stopnie_holo.items()}
## zmiana
if elt[0]== 0 and elt[1] == 0:
return zapis
if elt[1] == 0:
d = elt[0].degree()
a = elt[0].coefficients(sparse = false)[d]
k = inv_stopnie_holo[d] #ktory element bazy jest stopnia d? ten o indeksie k
a1 = baza[k][0].coefficients(sparse = false)[d]
elt1 = [R(0),R(0)]
elt1[0] = elt[0] - a/a1 * baza[k][0]
elt1[1] = R(0)
return zapis_w_bazie_dr(elt1, m, f, j, p) + vector([a/a1*GF(p)(i == k) for i in range(0, len(baza))])
g = elt[1]
g1 = R(elt[1].numerator())
g2 = R(elt[1].denominator())
d1 = g1.degree()
d2 = g2.degree()
a1 = g1.coefficients(sparse = false)[d1]
a2 = g2.coefficients(sparse = false)[d2]
a = a1/a2
d = d2 - d1
if (d*m - (m-j)*r >= 0):
elt1 = [R(0), R(0)]
elt1[0] = elt[0]
return zapis_w_bazie_dr(elt1, m, f, j, p)
stopnie2 = stopnie_drugiej_wspolrzednej_bazy_dr(m, f, j, p)
inv_stopnie2 = {v: k for k, v in stopnie2.items()}
k = inv_stopnie2[d]
elt1 = [R(0), R(0)]
elt1[0] = elt[0] - a*baza[k][0]
elt1[1] = elt[1] - a*baza[k][1]
return zapis_w_bazie_dr(elt1, m, f, j, p) + vector([a*GF(p)(i == k) for i in range(0, len(baza))])
def zapis_w_bazie_holo(elt, m, f, j, p):
R.<x> = PolynomialRing(GF(p))
f = R(f)
r = f.degree()
delta = GCD(m, r)
baza = baza_holo(m, f, j, p)
wymiar = len(baza)
zapis = vector([GF(p)(0) for i in baza])
stopnie = stopnie_bazy_holo(m, f, j, p)
inv_stopnie = {v: k for k, v in stopnie.items()}
if elt[0] == 0:
return zapis
d = elt[0].degree()
a = elt[0].coefficients(sparse = false)[d]
k = inv_stopnie[d] #ktory element bazy jest stopnia d? ten o indeksie k
a1 = baza[k][0].coefficients(sparse = false)[d]
elt1 = [R(0),R(0)]
elt1[0] = elt[0] - a/a1 * baza[k][0]
return zapis_w_bazie_holo(elt1, m, f, j, p) + vector([a/a1 * GF(p)(i == k) for i in range(0, len(baza))])
baza_dr(2, x^3 + 1, 0, 3)
{0: [x, 2/x], 1: [2, 2/x^2]}