2024-10-17 13:22:42 +02:00
% !TeX spellcheck = en_GB
\RequirePackage [l2tabu, orthodox] { nag}
\documentclass [a4paper,12pt] { amsart}
%\usepackage[margin=32mm,bottom=40mm]{geometry}
%\renewcommand{\baselinestretch}{1.1}
\usepackage { microtype}
\usepackage [charter] { mathdesign}
\let \circledS \undefined
%
\usepackage [T1] { fontenc}
\usepackage { tikz, tikz-cd, stmaryrd, amsmath, amsthm, amssymb,
hyperref, bbm, mathtools, mathrsfs}
%\usepackage{upgreek}
\newcommand { \upomega } { \boldsymbol { \omega } }
\newcommand { \upeta } { \boldsymbol { \eta } }
\newcommand { \dd } { \boldsymbol { d} }
\usepackage [shortlabels] { enumitem}
\usetikzlibrary { arrows}
\usetikzlibrary { positioning}
\usepackage [utf8x] { inputenc}
% \usepackage[MeX]{polski}
\newcommand { \bb } { \textbf }
\newcommand { \uu } { \underline }
\newcommand { \ol } { \overline }
\newcommand { \mc } { \mathcal }
\newcommand { \wh } { \widehat }
\newcommand { \wt } { \widetilde }
\newcommand { \mf } { \mathfrak }
\newcommand { \ms } { \mathscr }
\renewcommand { \AA } { \mathbb { A} }
\newcommand { \II } { \mathbb { I} }
\newcommand { \HH } { \mathbb { H} }
\newcommand { \ZZ } { \mathbb { Z} }
\newcommand { \CC } { \mathbb { C} }
\newcommand { \RR } { \mathbb { R} }
\newcommand { \PP } { \mathbb { P} }
\newcommand { \QQ } { \mathbb { Q} }
\newcommand { \LL } { \mathbb { L} }
\newcommand { \NN } { \mathbb { N} }
\newcommand { \FF } { \mathbb { F} }
\newcommand { \VV } { \mathbb { V} }
\newcommand { \ddeg } { \textbf { deg} \, }
\DeclareMathOperator { \SSh } { -Sh}
\DeclareMathOperator { \Ind } { Ind}
\DeclareMathOperator { \pr } { pr}
\DeclareMathOperator { \tr } { tr}
\DeclareMathOperator { \Sh } { Sh}
\DeclareMathOperator { \diag } { diag}
\DeclareMathOperator { \sgn } { sgn}
\DeclareMathOperator { \Divv } { Div}
\DeclareMathOperator { \Coind } { Coind}
\DeclareMathOperator { \coker } { coker}
\DeclareMathOperator { \im } { im}
\DeclareMathOperator { \id } { id}
\DeclareMathOperator { \Tot } { Tot}
\DeclareMathOperator { \Span } { Span}
\DeclareMathOperator { \res } { res}
\DeclareMathOperator { \Gl } { Gl}
\DeclareMathOperator { \Sl } { Sl}
\DeclareMathOperator { \GCD } { GCD}
\DeclareMathOperator { \ord } { ord}
\DeclareMathOperator { \Spec } { Spec}
\DeclareMathOperator { \rank } { rank}
\DeclareMathOperator { \Gal } { Gal}
\DeclareMathOperator { \Proj } { Proj}
\DeclareMathOperator { \Ext } { Ext}
\DeclareMathOperator { \Hom } { Hom}
\DeclareMathOperator { \End } { End}
\DeclareMathOperator { \cha } { char}
\DeclareMathOperator { \Cl } { Cl}
\DeclareMathOperator { \Jac } { Jac}
\DeclareMathOperator { \Lie } { Lie}
\DeclareMathOperator { \GSp } { GSp}
\DeclareMathOperator { \Sp } { Sp}
\DeclareMathOperator { \Sym } { Sym}
\DeclareMathOperator { \qlog } { qlog}
\DeclareMathOperator { \Aut } { Aut}
\DeclareMathOperator { \divv } { div}
\DeclareMathOperator { \mmod } { -mod}
\DeclareMathOperator { \ev } { ev}
\DeclareMathOperator { \Indec } { Indec}
\DeclareMathOperator { \pole } { pole}
\theoremstyle { plain}
\newtheorem { Theorem} { Theorem} [section]
\newtheorem * { mainthm} { Main Theorem}
\newtheorem { Remark} [Theorem]{ Remark}
\newtheorem { Lemma} [Theorem]{ Lemma}
\newtheorem { Corollary} [Theorem]{ Corollary}
\newtheorem { Conjecture} [Theorem]{ Conjecture}
\newtheorem { Proposition} [Theorem]{ Proposition}
\newtheorem { Setup} [Theorem]{ Setup}
\newtheorem { Example} [Theorem]{ Example}
\newtheorem { manualtheoreminner} { Theorem}
\newenvironment { manualtheorem} [1]{ %
\renewcommand \themanualtheoreminner { #1} %
\manualtheoreminner
} { \endmanualtheoreminner }
\newtheorem { Question} [Theorem]{ Question}
\theoremstyle { definition}
\newtheorem { Definition} [Theorem]{ Definition}
%\theoremstyle{remark}
\renewcommand { \thetable } { \arabic { section} .\arabic { Theorem} }
%\usepackage{refcheck}
\numberwithin { equation} { section}
\hyphenation { Woj-ciech}
%opening
\begin { document}
2024-10-17 15:02:25 +02:00
\title [The de Rham...] { ?? The de Rham cohomology of covers\\ with cyclic $ p $ -Sylow subgroup}
2024-10-17 13:22:42 +02:00
\author [A. Kontogeorgis and J. Garnek] { Aristides Kontogeorgis and J\k { e} drzej Garnek}
\address { ???}
\email { jgarnek@amu.edu.pl}
\subjclass [2020] { Primary 14G17, Secondary 14H30, 20C20}
\keywords { de~Rham cohomology, algebraic curves, group actions,
characteristic~$ p $ }
\urladdr { http://jgarnek.faculty.wmi.amu.edu.pl/}
\date { }
\begin { abstract}
????
\end { abstract}
\maketitle
\bibliographystyle { plain}
%
2024-10-17 15:02:25 +02:00
\section { Introduction}
2024-10-17 13:22:42 +02:00
%
2024-10-17 15:02:25 +02:00
\begin { mainthm}
Suppose that $ G $ is a group with a $ p $ -cyclic Sylow subgroup.
Let $ X $ be a curve with an action of~$ G $ over a field $ k $ of characteristic $ p $ .
The $ k [ G ] $ -module structure of $ H ^ 1 _ { dR } ( X ) $ is uniquely determined by the lower ramification groups and the fundamental characters of closed
points $ x $ of $ X $ that are ramified in the cover $ X \to X / G $ .
\end { mainthm}
2024-10-17 13:22:42 +02:00
\section { Cyclic covers}
%
2024-10-17 14:40:28 +02:00
Let for any $ \ZZ / p ^ n $ -cover $ X \to Y $
%
\begin { align*}
2024-10-17 20:22:54 +02:00
u_ { X/Y, P} ^ { (t)} & := \min \{ t \ge 0 : G_ P^ { (t)} \cong \ZZ /p^ { n-t} \} ,\\
l_ { X/Y, P} ^ { (t)} & := \min \{ t \ge 0 : G_ { P, t} \cong \ZZ /p^ { n-t} \} .
2024-10-17 14:40:28 +02:00
\end { align*}
%
Note that if $ G _ P = \ZZ / p ^ n $ , this coincides with the standard definition of
the $ t $ th upper (resp. lower) ramification jump of $ X \to Y $ at $ P $ .
2024-10-17 13:22:42 +02:00
%
2024-10-17 20:22:54 +02:00
\begin { Theorem} \label { thm:cyclic_ de_ rham}
2024-10-17 13:22:42 +02:00
Suppose that $ \pi : X \to Y $ is a $ \ZZ / p ^ n $ -cover. Let $ \langle G _ P : P \in X ( k ) \rangle = \ZZ / p ^ m = G _ { P _ 0 } $ for $ P _ 0 \in X ( k ) $ . Then, as $ k [ \ZZ / p ^ n ] $ -modules:
%
\[
H^ 1_ { dR} (X) \cong J_ { p^ n} ^ { 2 (g_ Y - 1)} \oplus J_ { p^ n - p^ { n-m} + 1} ^ 2 \oplus \bigoplus _ { P \neq P_ 0} J_ { p^ n - \frac { p^ n} { e_ { X/Y, P} } } ^ 2
\oplus \bigoplus _ P \bigoplus _ { t = 0} ^ { n-1} J_ { p^ n - p^ t} ^ { u_ { X/Y, P} ^ { (t+1)} - u_ { X/Y, P} ^ { (t)} } .
\]
\end { Theorem}
%
Write $ H : = \ZZ / p ^ n = \langle \sigma \rangle $ .
For any $ k [ H ] $ -module $ M $ denote:
%
\begin { align*}
M^ { (i)} & := \ker ((\sigma - 1)^ i : M \to M),\\
T^ i M & = T^ i_ H M := M^ { (i)} /M^ { (i-1)} \quad \textrm { for } i = 1, \ldots , p^ n.
\end { align*}
%
Recall that $ \dim _ k T ^ i M $ determines the structure of $ M $ completely (cf. ????).
In the inductive step we use also the group $ \ZZ / p ^ { n - 1 } $ . In this case
we denote the irreducible $ k [ \ZZ / p ^ { n - 1 } ] $ -modules by $ \mc J _ 1 , \ldots , \mc J _ { p ^ { n - 1 } } $
and $ \mc T ^ i M : = T ^ i _ { \ZZ / p ^ { n - 1 } } M $ for any $ k [ \ZZ / p ^ { n - 1 } ] $ -module $ M $ .
2024-10-17 14:40:28 +02:00
Note also that for $ j \ge 1 $ :
%
\[
l_ { X/Y, P} ^ { (j)} - l_ { X/Y, P} ^ { (j-1)} = \frac { 1} { p^ { j-1} } (u_ { X/Y, P} ^ { (j)} - u^ { (j-1)} _ { X/Y, P} )
\]
%
(in particular, $ u _ { X / Y, P } ^ { ( 1 ) } = l _ { X / Y, P } ^ { ( 1 ) } $ ). Moreover, if $ X' \to Y $ is the $ \ZZ / p ^ N $ -subcover of $ X \to Y $ for $ N \le n $ then:
%
\begin { itemize}
\item $ u _ { X' / Y, P } ^ { ( t ) } = u _ { X' / Y, P } ^ { ( t ) } $ for $ t \le N $ ,
\item $ l _ { X / X', P } ^ { ( t ) } = l _ { X / X', P } ^ { ( t + N ) } $ for $ t \le n - N $ .
\end { itemize}
2024-10-17 20:22:54 +02:00
\begin { Lemma} \label { lem:G_ invariants_ etale}
2024-10-17 13:22:42 +02:00
If the $ G $ -cover $ X \to Y $ is \' { e} tale, then the natural map
%
\[
H^ 1_ { dR} (Y) \to H^ 1_ { dR} (X)^ G
\]
%
is an isomorphism.
\end { Lemma}
\begin { proof}
????
\end { proof}
%
2024-10-17 20:22:54 +02:00
\begin { Lemma} \label { lem:trace_ surjective}
2024-10-17 13:22:42 +02:00
If the $ G $ -cover $ X \to Y $ is totally ramified, then the map
%
\[
\tr _ { X/Y} : H^ 1_ { dR} (X) \to H^ 1_ { dR} (Y)
\]
%
is an epimorphism.
\end { Lemma}
\begin { proof}
????
\end { proof}
%
2024-10-17 20:22:54 +02:00
\begin { Lemma} \label { lem:TiM_ isomorphism}
2024-10-17 15:02:25 +02:00
For any $ i \le p ^ n - 1 $ :
%
\[
(\sigma - 1) : T^ { i+1} M \hookrightarrow T^ i M.
\]
\end { Lemma}
\begin { proof}
\end { proof}
%
2024-10-17 20:22:54 +02:00
\begin { Lemma}
Let $ M $ be a $ k [ H ] $ -module. Let $ T ^ i M $ be as above and
$ \mc T ^ i M : = T ^ i _ { H' } M $ for $ H' \le H $ , $ H' \cong \ZZ / p ^ { n - 1 } $ .
If $ \mc T ^ i M \cong \mc T ^ { i + 1 } M $ for some $ i $ then:
%
\[
T^ { pi + p} M \cong T^ { pi + p - 1} M \cong \ldots \cong T^ { pi - p + 1} M.
\]
\end { Lemma}
\begin { proof}
??
\end { proof}
\begin { proof} [Proof of Theorem~\ref { thm:cyclic_ de_ rham} ]
2024-10-17 13:22:42 +02:00
We use the following notation: $ H' : = \langle \sigma ^ p \rangle \cong \ZZ / p ^ { n - 1 } $ ,
$ H'' : = H / \langle \sigma ^ { p ^ { n - 1 } } \rangle \cong \ZZ / p ^ { n - 1 } $ , $ Y' : = X / H' $ , $ X'' : = X / H'' $ .
2024-10-17 20:22:54 +02:00
Write also $ \mc M : = H ^ 1 _ { dR } ( X ) $ .
2024-10-17 13:22:42 +02:00
By induction hypothesis for $ H' $ acting on $ X $ , we have the following isomorphism of $ k [ H' ] $ -modules:
%
\[
2024-10-17 20:22:54 +02:00
\mc M \cong \mc J_ { p^ { n-1} } ^ { 2 (g_ { Y'} - 1)} \oplus \mc J_ { p^ { n-1} - p^ { n - 1 -m'} + 1} ^ 2 \oplus \bigoplus _ { P \neq P_ 0} \mc J_ { p^ n - \frac { p^ { n-1} } { e_ { X/Y', P} } } ^ 2
2024-10-17 13:22:42 +02:00
\oplus \bigoplus _ P \bigoplus _ { t = 0} ^ { n-1} \mc J_ { p^ n - p^ t} ^ { u_ { X/Y', P} ^ { (t+1)} - u_ { X/Y', P} ^ { (t)} }
\]
%
2024-10-17 14:40:28 +02:00
where
%
\[
m' :=
\begin { cases}
n-1, & \textrm { if } m = n,\\
2024-10-17 15:02:25 +02:00
m, & \textrm { otherwise.}
2024-10-17 14:40:28 +02:00
\end { cases}
\]
2024-10-17 20:22:54 +02:00
Therefore, for $ i \le p ^ n - p ^ { n - 1 } $
2024-10-17 13:22:42 +02:00
%
\begin { align*}
2024-10-17 20:22:54 +02:00
\dim _ k \mc T^ i \mc M =
2024-10-17 13:22:42 +02:00
\begin { cases}
???,
\end { cases}
\end { align*}
2024-10-17 15:02:25 +02:00
%
2024-10-17 20:22:54 +02:00
In particular, $ \dim _ k \mc T ^ 1 \mc M = \ldots = \dim _ k \mc T ^ { p ^ { n - 1 } - p ^ { n - 2 } } \mc M $ .
On the other hand, by Lemma~\ref { lem:TiM_ isomorphism} :
2024-10-17 15:02:25 +02:00
%
\begin { align*}
2024-10-17 20:22:54 +02:00
\dim _ k \mc T^ 1 \mc M & = \dim _ k T^ 1 \mc M + \ldots + \dim _ k T^ p \mc M\\
& \ge \dim _ k T^ { p^ n - p^ { n-1} } \mc M + \ldots + \dim _ k T^ { p^ n - p^ { n-1} } \mc M
= \dim _ k \mc T^ { p^ { n-1} - p^ { n-2} } \mc M.
2024-10-17 15:02:25 +02:00
\end { align*}
%
2024-10-17 20:22:54 +02:00
Since the left-hand side and right hand side are equal, we conclude by Lemma~\ref { lem:TiM_ isomorphism}
2024-10-17 15:02:25 +02:00
that
%
\[
2024-10-17 20:22:54 +02:00
\dim _ k T^ 1 \mc M = \ldots = \dim _ k T^ { p^ n - p^ { n-1} } \mc M = \frac { 1} { p} \dim _ k \mc T^ 1 \mc M.
2024-10-17 15:02:25 +02:00
\]
%
2024-10-17 20:22:54 +02:00
We consider now two cases. If the cover $ X \to Y $ is \' { e} tale, then by Lemma~\ref { lem:G_ invariants_ etale} we have
%
\[
\dim _ k T^ 1 \mc M = 2 g_ { X''}
\]
then the cover $ X \to Y $ must be also \' { e} tale.
2024-10-17 15:02:25 +02:00
Thus the proof follows in this case by~\cite { Nakajima??Inventiones} . Suppose now that
2024-10-17 20:22:54 +02:00
$ X \to X'' $ is not \' { e} tale. Then, by Lemma~\ref { lem:trace_ surjective} , the map $ \tr _ { X / X'' } : H ^ 1 _ { dR } ( X ) \to H ^ 1 _ { dR } ( X'' ) $ is surjective. Moreover, note that in the group ring $ k [ H ] $ we have:
2024-10-17 15:02:25 +02:00
%
\[
\tr _ { X/X''} = \sum _ { j = 0} ^ { p-1} (\sigma ^ { p^ { n-1} } )^ j = (\sigma ^ { p^ { n-1} } - 1)^ { p-1} =
(\sigma - 1)^ { p^ n - p^ { n-1} } .
\]
%
This implies that:
%
\[
2024-10-17 20:22:54 +02:00
\ker (\tr _ { X/X''} : \mc M \to \mc M'') = \mc M^ { (p^ n - p^ { n-1} )}
2024-10-17 15:02:25 +02:00
\]
%
and that $ \tr _ { X / X'' } $ induces a $ k $ -linear isomorphism $ T ^ { i + p ^ n - p ^ { n - 1 } } M \to \mc T ^ i M'' $ for any $ i \ge 1 $ . Thus:
%
\[
2024-10-17 20:22:54 +02:00
\dim _ k T^ { i + p^ n - p^ { n-1} } \mc M = \dim _ k \mc T^ i \mc M'' = ....
2024-10-17 15:02:25 +02:00
\]
%
This ends the proof.
2024-10-17 13:22:42 +02:00
\end { proof}
2024-10-17 15:02:25 +02:00
\section { Hypoelementary covers}
%
2024-10-17 20:22:54 +02:00
Assume now that $ G = H \rtimes _ { \chi } \ZZ / c $ .
%
\begin { Proposition} \label { prop:main_ thm_ for_ hypoelementary}
Main Theorem holds for a hypoelementary $ G $ as above and $ k = \ol k $ .
\end { Proposition}
%
\begin { Lemma}
Let $ M $ be a $ k [ G ] $ -module of finite dimension. The $ k [ G ] $ -structure of $ M $
is uniquely determined by the $ k [ C ] $ -structure of $ T ^ 1 M, \ldots , T ^ { p ^ n } M $ .
\end { Lemma}
\begin { proof}
???
\end { proof}
%
\begin { Lemma} \label { lem:N+Nchi+...}
Let $ N _ 1 $ , $ N _ 2 $ be $ k [ G ] $ -modules. Assume that for some $ j $
%
\[
N_ 1 \oplus N_ 1^ { \chi } \oplus \ldots \oplus N_ 1^ { \chi ^ j}
\cong N_ 2 \oplus N_ 2^ { \chi } \oplus \ldots \oplus N_ 2^ { \chi ^ j} .
\]
%
If $ \GCD ( j, p - 1 ) = 1 $ , then $ N _ 1 \cong N _ 2 $ . If $ p - 1 | j $ , then
$ N _ 1 \cong N _ 2 ^ { \chi ^ i } $ for some $ i $ .
\end { Lemma}
\begin { proof}
\end { proof}
%
\begin { Lemma} \label { lem:chevalley_ weil_ for_ Z/p}
If $ X $ has a $ G $ -action and $ Y : = X / H $ ,
then as $ k [ C ] $ -modules:
%
\[
H^ 1_ { dR} (X) \cong H^ 1_ { dR} (Y) \oplus N^ { p-1}
\]
%
for a $ k [ C ] $ -module $ N $ such that $ N ^ { \chi } \cong N $ .
\end { Lemma}
\begin { proof}
??Chevalley--Weil??
??is it really needed ??
\end { proof}
%
\begin { Lemma} \label { lem:TiM_ isomorphism_ hypoelementary}
For any $ i \le p ^ n - 1 $ :
%
\[
(\sigma - 1) : T^ { i+1} M \hookrightarrow (T^ i M)^ { \chi ^ { -1} } .
\]
\end { Lemma}
\begin { proof}
\end { proof}
2024-10-17 15:02:25 +02:00
2024-10-17 20:22:54 +02:00
\begin { proof} [Proof of Proposition~\ref { prop:main_ thm_ for_ hypoelementary} ]
We prove this by induction on $ n $ . If $ n = 0 $ , then it follows by Chevalley--Weil theorem.
Consider now two cases. Firstly, we assume that $ X \to Y $ is \' { e} tale.
Recall that by proof of Theorem~\ref { thm:cyclic_ de_ rham} , the map $ ( \sigma - 1 ) $
is an isomorphism of $ k $ -vector spaces between $ T ^ { i + 1 } \mc M $ and $ T ^ i \mc M $ for
$ i = 2 , \ldots , p ^ n $ . This yields an isomorphism of $ k [ C ] $ -modules for $ i \ge 2 $ :
%
\begin { equation} \label { eqn:TiM=T1M_ chi_ etale}
T^ i \mc M \cong (T^ 2 \mc M)^ { \chi ^ { -i+2} }
\end { equation}
%
Observe that $ \mc T ^ i \mc M $ has the filtration $ \mc M ^ { ( pi ) } \supset \mc M ^ { ( pi - 1 ) } \supset \ldots \supset \mc M ^ { ( pi - p ) } $ with subquotients $ T ^ { pi } \mc M, \ldots , T ^ { pi - p } \mc M $ .
Thus, since the category of $ k [ C ] $ -modules is semisimple, for $ i \le p ^ n - p ^ { n - 1 } $ :
%
\begin { align*}
\mc T^ i \mc M & \cong
\begin { cases}
T^ 1 \mc M \oplus T^ 2 \mc M \oplus \ldots \oplus (T^ 2 \mc M)^ { \chi ^ { -p + 1} } , & i = 1\\
T^ 2 \mc M \oplus \ldots \oplus (T^ 2 \mc M)^ { \chi ^ { -p} } , & i > 1.
\end { cases}
\end { align*}
%
Thus, since by induction hypothesis $ \mc T ^ i \mc M $ is determined by ramification data,
we have by Lemma~\ref { lem:N+Nchi+...} that $ T ^ 2 \mc M $ is determined by ramification data.
Moreover, by Lemma~\ref { lem:G_ invariants_ etale} , $ T ^ 1 \mc M \cong H ^ 1 _ { dR } ( X'' ) $
is also determined by ramification data (???).
Assume now that $ X \to Y $ is not etale. Analogously as in the previous case, Lemma~\ref { lem:TiM_ isomorphism_ hypoelementary} and proof of Theorem~\ref { thm:cyclic_ de_ rham}
yield an isomorphism of $ k [ C ] $ -modules:
%
\begin { equation} \label { eqn:TiM=T1M_ chi}
T^ { i+1} \mc M \cong (T^ 1 \mc M)^ { \chi ^ { -i} }
\end { equation}
%
for $ i \le p ^ n - p ^ { n - 1 } $ . Observe that $ \mc T ^ i M $ has the filtration $ \mc M ^ { ( pi ) } \supset \mc M ^ { ( pi - 1 ) } \supset \ldots \supset \mc M ^ { ( pi - p ) } $ with subquotients $ T ^ { pi } \mc M, \ldots , T ^ { pi - p + 1 } \mc M $ .
Thus, since the category of $ k [ C ] $ -modules is semisimple, for $ i \le p ^ n - p ^ { n - 1 } $ :
%
\begin { align*}
\mc T^ i \mc M & \cong T^ { pi - p + 1} \mc M \oplus \ldots \oplus T^ { pi} \mc M\\
& \cong T^ 1 \mc M \oplus (T^ 1 \mc M)^ { \chi ^ { -1} } \oplus \ldots \oplus
(T^ 1 \mc M)^ { \chi ^ { -p} } .
\end { align*}
%
By induction assumption, the $ k [ C ] $ -module structure of $ \mc T ^ i \mc M $ is uniquely determined by the ramification data. Thus, by Lemma~\ref { lem:N+Nchi+...} for $ N : = T ^ 1 \mc M $ and by~\eqref { eqn:TiM=T1M_ chi} the $ k [ C ] $ -structure of the modules $ T ^ i \mc M $ is uniquely determined by the ramification data for $ i \le p ^ n - p ^ { n - 1 } $ .
By similar reasoning, $ \tr _ { X / X' } $ yields an isomorphism:
%
\[
T^ { i + p^ n - p^ { n-1} } \mc M \cong (\mc T^ i \mc M'')^ { \chi ^ { -1??} } .
\]
%
Thus, by induction hypothesis for $ \mc M'' $ , the $ k [ C ] $ -structure of $ T ^ { i + p ^ n - p ^ { n - 1 } } \mc M $
is determined by ramification data as well.
\end { proof}
\section { Proof of Main Theorem}
%
(Conlon induction ???) (algebraic closure ???)
2024-10-17 13:22:42 +02:00
\bibliography { bibliografia}
\end { document}