X ---> X/C cases
This commit is contained in:
parent
a1a831d315
commit
d29a4adb22
@ -924,7 +924,7 @@ Indeed, ????. The ramification points of $\pi : X \to X/G$ are as follows:
|
||||
\item[] (their stabilizers are subgroups $C_1 = C$, $\ldots$, $C_p$
|
||||
conjugated to $C$),
|
||||
|
||||
\item point $P_{\infty}$ above $Q_{\infty}$ (its stabilizer is $G$),
|
||||
\item a point $P_{\infty}$ above $Q_{\infty}$ (its stabilizer is $G$),
|
||||
|
||||
\item points $P_i^{(1)}, \ldots, P_i^{(p \cdot (p-1))}$ above $Q_i$ for $i = 1, \ldots, N$
|
||||
\item[] (their stabilizers equal $C'$).
|
||||
@ -933,6 +933,15 @@ Indeed, ????. The ramification points of $\pi : X \to X/G$ are as follows:
|
||||
The same points are in the ramification locus of the morphism $X \to X/C$ with the following
|
||||
ramification groups:
|
||||
%
|
||||
\[
|
||||
C_{P_i^{(j)}} =
|
||||
\begin{cases*}
|
||||
C, & \textrm{ if } (i, j) = \\
|
||||
C', &
|
||||
\end{cases*}
|
||||
\]
|
||||
|
||||
|
||||
\begin{align*}
|
||||
C_{P_0^{(1)}} &= C\\
|
||||
C_{P_0^{(i)}} &= C' \qquad \textrm{ for } i > 1,\\
|
||||
|
Loading…
Reference in New Issue
Block a user