1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-09 13:32:33 +01:00
Groups.jl/src/abelianize.jl

70 lines
2.0 KiB
Julia
Raw Normal View History

2022-04-02 14:24:01 +02:00
function _abelianize(
i::Integer,
source::AutomorphismGroup{<:FreeGroup},
2022-10-14 01:14:38 +02:00
target::MatrixGroups.SpecialLinearGroup{N,T}) where {N,T}
2022-04-02 14:24:01 +02:00
n = ngens(object(source))
@assert n == N
aut = alphabet(source)[i]
if aut isa Transvection
# we change (i,j) to (j, i) to be consistent with the action:
# Automorphisms act on the right which corresponds to action on
# the columns in the matrix case
eij = MatrixGroups.ElementaryMatrix{N}(
2022-10-14 01:14:38 +02:00
aut.j,
aut.i,
ifelse(aut.inv, -one(T), one(T))
)
2022-04-02 14:24:01 +02:00
k = alphabet(target)[eij]
return word_type(target)([k])
else
throw("unexpected automorphism symbol: $(typeof(aut))")
end
end
2022-04-02 16:19:08 +02:00
function _abelianize(
i::Integer,
source::AutomorphismGroup{<:Groups.SurfaceGroup},
2022-10-14 01:14:38 +02:00
target::MatrixGroups.SpecialLinearGroup{N,T}) where {N,T}
2022-04-02 16:19:08 +02:00
n = ngens(Groups.object(source))
@assert n == N
g = alphabet(source)[i].autFn_word
result = one(target)
for l in word(g)
append!(word(result), _abelianize(l, parent(g), target))
end
return word(result)
end
function Groups._abelianize(
i::Integer,
source::AutomorphismGroup{<:Groups.SurfaceGroup},
2022-10-14 01:14:38 +02:00
target::MatrixGroups.SymplecticGroup{N,T}
) where {N,T}
2022-04-02 16:19:08 +02:00
@assert iseven(N)
As = alphabet(source)
At = alphabet(target)
SlN = let genus = Groups.genus(Groups.object(source))
@assert 2genus == N
MatrixGroups.SpecialLinearGroup{2genus}(T)
end
ab = Groups.Homomorphism(Groups._abelianize, source, SlN, check=false)
matrix_spn_map = let S = gens(target)
2023-03-15 16:51:22 +01:00
Dict(MatrixGroups.matrix(g) => word(g) for g in union(S, inv.(S)))
2022-04-02 16:19:08 +02:00
end
# renumeration:
# (f1, f2, f3, f4, f5, f6) = (a₁, a₂, a₃, b₁, b₂, b₃) →
# → (b₃, a₃, b₂, a₂, b₁, a₁)
# hence p = [6, 4, 2, 5, 3, 1]
p = [reverse(2:2:N); reverse(1:2:N)]
g = source([i])
2023-03-15 16:51:22 +01:00
Mg = MatrixGroups.matrix(ab(g))[p, p]
2022-04-02 16:19:08 +02:00
return matrix_spn_map[Mg]
end