1
0
mirror of https://github.com/kalmarek/SmallHyperbolic synced 2024-11-09 04:05:27 +01:00
SmallHyperbolic/data/table_2_4_4.csv

4.4 KiB

1order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
26 & 40 & 40 & 0 & 45 & No & a^-1 * c * b * c * a^-1 * c * b * c^-1, b * c * a^-1 * c * b * c * a^-1 * c^-1 & Yes & No & 0& []& [($\textrm{Alt}_{7}$, 2), ($B_{2}(3)$, 1)] & [ 5, 7 ] & 28
36 & 40 & 48 & 0 & 37 & No & b * c * a * c^-1 * b * c^-1 * a^-1 * c^-1, a^-1 * c * b * c * a * c * b * c^-1 & Yes & No & 1& [L_2(3^2)]& [($B_{2}(3)$, 3), ($A_{3}(3)$, 1)] & [ 3, 5, 6 ] & 28
46 & 40 & 54 & 0 & 49 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c * a^-1 * c^-1 * b * c^-1 * a * c & Yes & No & 1& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 4), (${}^2A_{4}(4)$, 1)] & [ 3, 5, 10, 15, 20, 25 ] & 28
56 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 5, 9 ] & 28
66 & 48 & 48 & 0 & 29 & No & a^-1 * c^-1 * b * c, b * c * a * c & Yes & No & 3& []& [($B_{2}(3)$, 1), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1)] & [ 3, 4 ] & 28
76 & 48 & 54 & 0 & 41 & No & b * c * a * c^-1 * b * c * a * c^-1, a^-1 * c * b * c * a^-1 * c^-1 * b^-1 * c^-1 & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 2)] & [ 3, 4, 10, 11, 14, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
86 & 48 & 54 & 2 & 41 & No & b * c * a * c^-1 * b * c * a^-1 * c, a * c^-1 * b^-1 * c^-1 * a^-1 * c^-1 * b^-1 * c & Yes & No & 3& []& [(${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 4 ] & 28
96 & 54 & 54 & 0 & 53 & No & a * c^-1 * b^-1 * c^-1 * a * c * b * c, b^-1 * c^-1 * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{4}(4)$, 2)] & [ 3, 9, 27 ] & 28
106 & 54 & 54 & 2 & 53 & No & a^-1 * c * b^-1 * c * a * c^-1 * b * c, b^-1 * c * a^-1 * c * b * c^-1 * a * c & Yes & No & 3& []& [($\textrm{Alt}_{9}$, 2), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 1), (${}^2A_{4}(4)$, 1)] & [ 3, 9, 12, 15, 18, 21, 24, 27 ] & 28
116 & 54 & 54 & 8 & 53 & No & a^-1 * c^-1 * b * c, b^-1 * c^-1 * a * c & Yes & No & 3& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 4)] & [ 3, 9, 12, 18, 21, 24, 27 ] & 28
128 & 40 & 40 & 0 & 45 & No & a^-1 * c^-1 * b * c, b * c^-1 * a^-1 * c & Yes & No & 0& [L_2(\infty^4)]& [($B_{2}(3)$, 1), ($C_{2}(4)$, 2), ($\textrm{Alt}_{10}$, 2), ($B_{2}(5)$, 5), ($\textrm{Alt}_{11}$, 2)] & [ 5, 6, 10, 11, 15, 20, 21, 25, 26 ] & 28
138 & 40 & 48 & 0 & 37 & Yes & & ? & No & 0& [L_2(3^2)]& [($B_{2}(5)$, 4)] & [ 5, 6 ] & 28
148 & 40 & 54 & 0 & 49 & Yes & & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4)] & [ 6 ] & 28
158 & 40 & 54 & 2 & 49 & No & b * c * a * c^-1 * b * c^-1 * a * c, a^-1 * c * b^-1 * c * a^-1 * c * b^-1 * c & Yes & No & 0& [L_2(3^2)]& [($B_{2}(3)$, 2), ($\textrm{M}_{12}$, 4), ($\textrm{Alt}_{10}$, 3), ($A_{3}(3)$, 2), (${}^2A_{4}(4)$, 1)] & [ 6, 10, 12, 15, 16, 21, 22, 27, 28 ] & 28
168 & 48 & 48 & 0 & 29 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 3), ($C_{3}(2)$, 4), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 5, 11, 19, 25, 28 ] & 28
178 & 48 & 48 & 1 & 29 & No & b^-1 * c^-1 * a^-1 * c * b * c * a * c^-1, a * c^-1 * b * c * a^-1 * c * b^-1 * c^-1 & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($B_{2}(5)$, 3), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 7, 11, 15, 19, 22, 23, 24, 25, 26, 27, 28 ] & 28
188 & 48 & 54 & 0 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 1)] & [ 3, 4, 9 ] & 28
198 & 48 & 54 & 2 & 41 & Yes & & Yes & No & 2& []& [($B_{2}(3)$, 2), ($C_{3}(2)$, 1), ($\textrm{Alt}_{10}$, 2), (${}^2A_{4}(4)$, 1)] & [ 3, 4, 10, 13, 20, 26, 28 ] & 28
208 & 54 & 54 & 0 & 53 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 28
218 & 54 & 54 & 2 & 53 & No & a^-1 * c^-1 * b^-1 * c, b * c * a * c & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2), ($C_{3}(2)$, 4), ($\textrm{Alt}_{10}$, 12), (${}^2A_{3}(9)$, 1), ($A_{3}(3)$, 5), (${}^2A_{4}(4)$, 1), ($\textrm{Alt}_{11}$, 4)] & [ 3, 4, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 ] & 28
228 & 54 & 54 & 8 & 53 & No & a * c * b^-1 * c^-1 * a^-1 * c * b * c^-1, b^-1 * c * a * c^-1 * b * c * a^-1 * c^-1 & Yes & No & 2& []& [($B_{2}(3)$, 2), ($\textrm{Alt}_{9}$, 2)] & [ 3, 4, 9, 18, 27, 28 ] & 28