1
0
mirror of https://github.com/kalmarek/SmallHyperbolic synced 2024-11-09 04:05:27 +01:00
SmallHyperbolic/data/table_3_3_3.csv

10 KiB

1order1 & order2 & order3 & index & presentation length & hyperbolic & witnesses for non-hyperbolicity & virtually torsion-free & Kazhdan & abelianization dimension & L2-quotients & quotients & alternating quotients & maximal order for alternating quotients
214 & 14 & 14 & 0 & 27 & ? & & Yes & Yes & 0& [L_2(7)]& [(${}^2A_{2}(9)$, 1), (${}^2A_{2}(25)$, 1)] & [ ] & 36
314 & 14 & 14 & 1 & 27 & No & c^-1 * a * b^-1 * a * c * a * b^-1 * a, a^-1 * b * c * a * b^-1 * a * c^-1 * b & ? & Yes & 1& []& [] & [ 3 ] & 36
414 & 14 & 14 & 2 & 27 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & Yes & 0& []& [($\textrm{Alt}_{7}$, 1)] & [ 7 ] & 36
514 & 14 & 14 & 6 & 27 & No & c * a * b * a, b^-1 * a^-1 * c * a & Yes & Yes & 1& []& [($A_{2}(8)$, 2)] & [ 3 ] & 36
614 & 14 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1)] & [ 3, 8 ] & 36
714 & 14 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b^-1 * a * c * a^-1 * b^-1 * a * c * a^-1 & ? & ? & 0& [L_2(7)]& [] & [ ] & 36
814 & 14 & 16 & 4 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a, a^-1 * b * c^-1 * a * b * a * c * b^-1 & ? & ? & 0& []& [] & [ ] & 36
914 & 14 & 16 & 5 & 27 & No & c * a * b * a * c^-1 * b * a * c^-1 * b * a^-1, b * a^-1 * c^-1 * a * b^-1 * c^-1 * a * b * c * a^-1 & ? & ? & 1& []& [] & [ 3 ] & 36
1014 & 14 & 18 & 0 & 33 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 1& []& [(${}^2A_{2}(9)$, 1)] & [ 3 ] & 36
1114 & 14 & 18 & 4 & 33 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
1214 & 14 & 24 & 0 & 35 & Yes & & ? & ? & 1& [L_2(7)]& [] & [ 3 ] & 36
1314 & 14 & 24 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 1& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), (${}^2A_{2}(25)$, 1)] & [ 3, 7 ] & 36
1414 & 14 & 24 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{M}_{22}$, 1)] & [ 3, 8 ] & 36
1514 & 14 & 24 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & Yes & ? & 1& []& [($\textrm{Alt}_{7}$, 1)] & [ 3, 7 ] & 36
1614 & 14 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
1714 & 14 & 26 & 1 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & Yes & ? & 0& []& [($A_{2}(9)$, 1)] & [ 14 ] & 36
1814 & 14 & 26 & 3 & 35 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ ] & 36
1914 & 14 & 26 & 4 & 35 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
2014 & 14 & 26 & 5 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
2114 & 14 & 26 & 7 & 35 & No & b * a^-1 * c * a^-1 * b^-1 * a * c^-1 * a, c^-1 * a * b * a^-1 * c * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
2214 & 16 & 16 & 0 & 27 & No & b^-1 * a * c * b * a^-1 * c^-1, b^-1 * c * a * b^-1 * c^-1 * a & ? & No & 0& [L_2(7)]& [] & [ ] & 36
2314 & 16 & 16 & 1 & 27 & No & a^-1 * b * c * a^-1 * b * a * c^-1 * a^-1 * b^-1 * a * c^-1 * b^-1, c * a^-1 * b * a * c * a^-1 * b^-1 * a * c^-1 * a^-1 * b^-1 * a & ? & ? & 1& []& [] & [ 3, 4 ] & 36
2414 & 16 & 18 & 0 & 33 & No & a * c * b^-1 * a^-1 * c * b, c^-1 * a^-1 * b^-1 * c^-1 * a * b & ? & ? & 1& []& [] & [ 3 ] & 36
2514 & 16 & 24 & 0 & 35 & Yes & & ? & No & 1& [L_2(7)]& [] & [ 3 ] & 36
2614 & 16 & 24 & 1 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
2714 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
2814 & 16 & 26 & 1 & 35 & Yes & & ? & No & 1& []& [] & [ 3 ] & 36
2914 & 16 & 26 & 3 & 35 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
3014 & 16 & 26 & 7 & 35 & Yes & & ? & ? & 0& []& [] & [ ] & 36
3114 & 18 & 18 & 0 & 39 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & No & 2& []& [] & [ 3 ] & 36
3214 & 18 & 24 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3 ] & 36
3314 & 18 & 26 & 0 & 41 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
3414 & 18 & 26 & 3 & 41 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
3514 & 24 & 24 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 2& [L_2(7)]& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{3}(9)$, 1)] & [ 3, 7, 8, 22, 28, 29, 31, 35, 36 ] & 36
3614 & 24 & 24 & 1 & 43 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
3714 & 24 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 1& []& [] & [ 3 ] & 36
3814 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
3914 & 24 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
4014 & 24 & 26 & 7 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 1& []& [] & [ 3 ] & 36
4114 & 26 & 26 & 0 & 43 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 0& []& [] & [ ] & 36
4214 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
4314 & 26 & 26 & 3 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
4414 & 26 & 26 & 4 & 43 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
4514 & 26 & 26 & 5 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 14 ] & 36
4614 & 26 & 26 & 15 & 43 & No & c^-1 * a * b^-1 * a, a^-1 * b * c^-1 * b & ? & ? & 0& []& [] & [ 13 ] & 36
4716 & 16 & 16 & 0 & 27 & No & c * a * b * a, a^-1 * b^-1 * c^-1 * b & Yes & No & 1& []& [(${}^2A_{2}(9)$, 1), ($\textrm{J}_{2}$, 1), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 1), (${}^2A_{2}(81)$, 2)] & [ 3, 4 ] & 36
4816 & 16 & 16 & 1 & 27 & No & c * a * b * a * c^-1 * a^-1 * b^-1 * a^-1, b * a * c^-1 * a^-1 * b^-1 * a * c * a^-1 & Yes & No & 0& []& [($A_{2}(3)$, 1), (${}^2A_{2}(9)$, 2), (${}^2A_{2}(81)$, 2)] & [ 5, 29 ] & 36
4916 & 16 & 18 & 0 & 33 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
5016 & 16 & 24 & 0 & 35 & Yes & & Yes & No & 1& []& [($\textrm{Alt}_{10}$, 1), ($A_{4}(2)$, 1)] & [ 3, 4, 10, 34, 36 ] & 36
5116 & 16 & 24 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & Yes & No & 1& []& [($\textrm{Alt}_{9}$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 5, 9, 21, 29, 33, 34 ] & 36
5216 & 16 & 26 & 0 & 35 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
5316 & 16 & 26 & 1 & 35 & No & b^-1 * a * c^-1 * b * a * c^-1, a * c^-1 * b^-1 * a * c^-1 * b & ? & No & 0& [L_2(13)]& [] & [ 16, 30 ] & 36
5416 & 18 & 18 & 0 & 39 & No & b^-1 * a^-1 * c^-1 * a^-1 * b * a * c^-1 * a, c^-1 * a * b * a * c^-1 * a * b * a & Yes & No & 2& []& [($A_{2}(3)$, 2), (${}^2A_{2}(64)$, 2), ($A_{2}(9)$, 3)] & [ 3, 4 ] & 36
5516 & 18 & 24 & 0 & 41 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{10}$, 1)] & [ 3, 4, 10, 19, 34 ] & 36
5616 & 18 & 26 & 0 & 41 & Yes & & ? & ? & 1& []& [] & [ 3 ] & 36
5716 & 24 & 24 & 0 & 43 & Yes & & Yes & No & 2& []& [($\textrm{Alt}_{7}$, 1), ($\textrm{Alt}_{8}$ or $A_{2}(4)$, 2), (${}^2A_{2}(25)$, 1), ($\textrm{J}_{2}$, 1), ($C_{3}(2)$, 1), (${}^2A_{3}(9)$, 1), ($B_{2}(5)$, 1), ($\textrm{HS}_{}$, 1)] & [ 3, 4, 7, 8, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
5816 & 24 & 24 & 1 & 43 & Yes & & Yes & No & 2& []& [($C_{3}(2)$, 2)] & [ 3, 4, 5, 17, 18, 19, 21, 22, 27, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
5916 & 24 & 26 & 0 & 43 & Yes & & ? & ? & 1& []& [] & [ 3, 4 ] & 36
6016 & 24 & 26 & 1 & 43 & Yes & & ? & ? & 1& [L_2(13)]& [] & [ 3 ] & 36
6116 & 26 & 26 & 0 & 43 & Yes & & ? & No & 1& []& [] & [ 3, 26 ] & 36
6216 & 26 & 26 & 1 & 43 & Yes & & ? & ? & 0& [L_2(13)]& [($A_{2}(3)$, 1)] & [ ] & 36
6316 & 26 & 26 & 3 & 43 & Yes & & Yes & No & 0& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 26 ] & 36
6416 & 26 & 26 & 5 & 43 & Yes & & Yes & ? & 1& [L_2(13)]& [($A_{2}(3)$, 1), ($G_{2}(3)$, 1), ($A_{3}(3)$, 1)] & [ 3, 14, 26, 28, 29 ] & 36
6518 & 18 & 18 & 0 & 45 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 27, 36 ] & 36
6618 & 18 & 24 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 12, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
6718 & 18 & 26 & 0 & 47 & No & c * a * b * a, b * a * c * a & Yes & No & 2& []& [($A_{2}(3)$, 2), ($A_{2}(9)$, 3)] & [ 3, 13 ] & 36
6818 & 24 & 24 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 3& []& [($\textrm{Alt}_{10}$, 1), (${}^2A_{3}(9)$, 1), ($\textrm{Alt}_{11}$, 1)] & [ 3, 4, 10, 11, 15, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36 ] & 36
6918 & 24 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & ? & ? & 2& []& [] & [ 3, 27 ] & 36
7018 & 26 & 26 & 0 & 49 & No & a^-1 * b * c * b, c * a * b^-1 * a & Yes & No & 1& []& [($G_{2}(3)$, 2)] & [ 3, 13 ] & 36
7118 & 26 & 26 & 1 & 49 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& []& [($A_{2}(3)$, 2), ($G_{2}(3)$, 1)] & [ 3, 13, 27 ] & 36
7224 & 24 & 24 & 0 & 51 & Yes & & Yes & No & 3& []& [($\textrm{Alt}_{7}$, 3), ($\textrm{M}_{12}$, 1), ($A_{2}(7)$, 1), ($B_{2}(5)$, 3), ($A_{4}(2)$, 1)] & [ 3, 4, 7, 13, 15, 18, 19, 20, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
7324 & 24 & 24 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 3& []& [($\textrm{M}_{22}$, 1), (${}^2A_{3}(9)$, 3)] & [ 3, 4, 5, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36 ] & 36
7424 & 24 & 26 & 0 & 51 & Yes & & ? & No & 2& []& [] & [ 3, 4 ] & 36
7524 & 24 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 2& [L_2(13)]& [($A_{3}(3)$, 1)] & [ 3, 13, 14, 15, 16, 26, 27, 28 ] & 36
7624 & 26 & 26 & 0 & 51 & Yes & & ? & No & 1& []& [] & [ 3, 26, 28 ] & 36
7724 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 27 ] & 36
7824 & 26 & 26 & 3 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & ? & No & 1& []& [($A_{2}(3)$, 2)] & [ 3, 13, 14, 16, 26 ] & 36
7924 & 26 & 26 & 5 & 51 & Yes & & ? & No & 1& [L_2(13)]& [($A_{2}(3)$, 2), ($A_{3}(3)$, 1)] & [ 3, 13, 14, 26, 27, 28 ] & 36
8026 & 26 & 26 & 0 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 1), ($A_{2}(9)$, 3)] & [ 3, 26 ] & 36
8126 & 26 & 26 & 1 & 51 & No & a^-1 * b^-1 * c^-1 * b^-1, b * a * c^-1 * a & Yes & No & 0& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 2), ($G_{2}(3)$, 6)] & [ 13, 26 ] & 36
8226 & 26 & 26 & 5 & 51 & Yes & & Yes & No & 1& []& [($A_{2}(3)$, 2), (${}^2A_{2}(16)$, 1)] & [ 3 ] & 36
8326 & 26 & 26 & 21 & 51 & No & b^-1 * a * c^-1 * a, a^-1 * b * c^-1 * b & Yes & No & 0& [L_2(13)]& [($A_{2}(3)$, 5), (${}^2A_{2}(16)$, 3), ($G_{2}(3)$, 1), (${}^2F_4(2)'$, 1)] & [ 13, 30 ] & 36