Poisson link
This commit is contained in:
parent
834e7d9a24
commit
1634b9d868
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[4, 5, 3, 4, 3, 5, 3, 5, 4, 4, 4, 3, 5, 4, 4, 4, 3, 5]`
|
* dla `ABC`: `[4, 5, 3, 4, 3, 5, 3, 5, 4, 4, 4, 3, 5, 4, 4, 4, 3, 5]`
|
||||||
* dla `XYZ`: `[4, 4, 5, 3, 4, 4, 3, 5, 3, 4, 4, 7, 6, 5, 6, 4, 5, 3]`
|
* dla `XYZ`: `[4, 4, 5, 3, 4, 4, 3, 5, 3, 4, 4, 7, 6, 5, 6, 4, 5, 3]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[3, 4, 5, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 3]`
|
* dla `ABC`: `[3, 4, 5, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 3]`
|
||||||
* dla `XYZ`: `[4, 5, 4, 5, 4, 4, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5]`
|
* dla `XYZ`: `[4, 5, 4, 5, 4, 4, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[5, 3, 5, 3, 3, 5, 5, 3, 3, 4, 4, 4, 5, 3, 4, 3, 3, 3, 3, 4]`
|
* dla `ABC`: `[5, 3, 5, 3, 3, 5, 5, 3, 3, 4, 4, 4, 5, 3, 4, 3, 3, 3, 3, 4]`
|
||||||
* dla `XYZ`: `[3, 4, 6, 7, 3, 7, 4, 5, 3, 3, 4, 5, 3, 4, 3, 6, 3, 3, 3, 5]`
|
* dla `XYZ`: `[3, 4, 6, 7, 3, 7, 4, 5, 3, 3, 4, 5, 3, 4, 3, 6, 3, 3, 3, 5]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[6, 5, 5, 5, 4, 4, 4, 5, 7, 8, 5, 4, 5, 6, 7, 7, 3, 7, 7, 6]`
|
* dla `ABC`: `[6, 5, 5, 5, 4, 4, 4, 5, 7, 8, 5, 4, 5, 6, 7, 7, 3, 7, 7, 6]`
|
||||||
* dla `XYZ`: `[4, 5, 3, 5, 3, 3, 4, 6, 4, 4, 4, 4, 4, 5, 5, 4, 6, 6, 5, 3]`
|
* dla `XYZ`: `[4, 5, 3, 5, 3, 3, 4, 6, 4, 4, 4, 4, 4, 5, 5, 4, 6, 6, 5, 3]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[5, 5, 3, 4, 3, 4, 3, 3, 3, 7, 7, 4, 5, 3, 4, 4, 3, 5]`
|
* dla `ABC`: `[5, 5, 3, 4, 3, 4, 3, 3, 3, 7, 7, 4, 5, 3, 4, 4, 3, 5]`
|
||||||
* dla `XYZ`: `[6, 3, 5, 6, 7, 6, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 6, 6]`
|
* dla `XYZ`: `[6, 3, 5, 6, 7, 6, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 6, 6]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[6, 6, 5, 4, 6, 6, 4, 6, 3, 4, 5, 4, 5, 4, 4]`
|
* dla `ABC`: `[6, 6, 5, 4, 6, 6, 4, 6, 3, 4, 5, 4, 5, 4, 4]`
|
||||||
* dla `XYZ`: `[4, 4, 4, 4, 7, 3, 5, 5, 4, 3, 3, 5, 4, 3, 4]`
|
* dla `XYZ`: `[4, 4, 4, 4, 7, 3, 5, 5, 4, 3, 3, 5, 4, 3, 4]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[4, 3, 4, 5, 4, 3, 3, 4, 5, 3, 6, 4, 7, 5, 3, 4, 5, 4]`
|
* dla `ABC`: `[4, 3, 4, 5, 4, 3, 3, 4, 5, 3, 6, 4, 7, 5, 3, 4, 5, 4]`
|
||||||
* dla `XYZ`: `[3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4]`
|
* dla `XYZ`: `[3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[4, 5, 5, 4, 6, 4, 3, 4, 5, 5, 4, 4, 4, 8, 5, 4, 5, 4, 4, 4]`
|
* dla `ABC`: `[4, 5, 5, 4, 6, 4, 3, 4, 5, 5, 4, 4, 4, 8, 5, 4, 5, 4, 4, 4]`
|
||||||
* dla `XYZ`: `[3, 5, 5, 4, 5, 3, 3, 5, 6, 5, 6, 4, 4, 3, 3, 4, 5, 3, 3, 4]`
|
* dla `XYZ`: `[3, 5, 5, 4, 5, 3, 3, 5, 6, 5, 6, 4, 4, 3, 3, 4, 5, 3, 3, 4]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[5, 3, 3, 6, 5, 3, 4, 4, 4, 5, 5, 4, 4, 4, 3]`
|
* dla `ABC`: `[5, 3, 3, 6, 5, 3, 4, 4, 4, 5, 5, 4, 4, 4, 3]`
|
||||||
* dla `XYZ`: `[4, 3, 6, 4, 3, 6, 4, 3, 5, 4, 5, 5, 4, 5, 4]`
|
* dla `XYZ`: `[4, 3, 6, 4, 3, 6, 4, 3, 5, 4, 5, 5, 4, 5, 4]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[7, 3, 3, 3, 3, 5, 6, 6, 3, 3, 5, 7, 3, 4, 4, 4, 3, 5, 3, 4]`
|
* dla `ABC`: `[7, 3, 3, 3, 3, 5, 6, 6, 3, 3, 5, 7, 3, 4, 4, 4, 3, 5, 3, 4]`
|
||||||
* dla `XYZ`: `[4, 4, 4, 5, 4, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 4, 3, 4, 4]`
|
* dla `XYZ`: `[4, 4, 4, 5, 4, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 4, 3, 4, 4]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `17` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `17` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[3, 3, 4, 5, 4, 3, 3, 5, 4, 4, 4, 3, 4, 3, 4, 6, 4]`
|
* dla `ABC`: `[3, 3, 4, 5, 4, 3, 3, 5, 4, 4, 4, 3, 4, 3, 4, 6, 4]`
|
||||||
* dla `XYZ`: `[5, 3, 3, 6, 5, 3, 3, 6, 5, 4, 4, 3, 4, 5, 4, 3, 3]`
|
* dla `XYZ`: `[5, 3, 3, 6, 5, 3, 3, 6, 5, 4, 4, 3, 4, 5, 4, 3, 3]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
@ -23,19 +23,20 @@ Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
|
|||||||
|
|
||||||
|
|
||||||
**Zadanie 2:**
|
**Zadanie 2:**
|
||||||
Rozkład Poissona określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poiss_λ(zaszło k-zdarzeń) = `$e^{-λ}\frac{λ^k}{k!}$, gdzie `λ` jest (globalną) średnią liczbą zdarzeń.
|
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
|
||||||
|
|
||||||
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poiss_λ`. W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
|
||||||
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
|
||||||
* dla `ABC`: `[5, 6, 5, 4, 3, 3, 4, 3, 5, 5, 3, 4, 4, 5, 3]`
|
* dla `ABC`: `[5, 6, 5, 4, 3, 3, 4, 3, 5, 5, 3, 4, 4, 5, 3]`
|
||||||
* dla `XYZ`: `[3, 3, 4, 4, 3, 4, 3, 3, 5, 4, 3, 4, 4, 6, 4]`
|
* dla `XYZ`: `[3, 3, 4, 4, 3, 4, 3, 3, 5, 4, 3, 4, 4, 6, 4]`
|
||||||
|
|
||||||
|
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
|
||||||
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
|
||||||
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
|
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
|
||||||
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
|
||||||
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
|
||||||
|
|
||||||
(funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(λ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `λ`)
|
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
|
||||||
|
|
||||||
|
|
||||||
**Zadanie 3:**
|
**Zadanie 3:**
|
||||||
|
Loading…
Reference in New Issue
Block a user