aitech-sd-lab/NLU_lab_7-8/main.py

86 lines
2.7 KiB
Python
Raw Normal View History

2022-05-02 17:49:46 +02:00
from conllu import parse_incr
from flair.data import Corpus, Sentence, Token
from flair.datasets import SentenceDataset
from flair.embeddings import StackedEmbeddings
from flair.embeddings import WordEmbeddings
from flair.embeddings import CharacterEmbeddings
from flair.embeddings import FlairEmbeddings
from flair.models import SequenceTagger
from flair.trainers import ModelTrainer
import random
import torch
from tabulate import tabulate
fields = ['id', 'form', 'frame', 'slot']
def nolabel2o(line, i):
return 'O' if line[i] == 'NoLabel' else line[i]
def conllu2flair(sentences, label=None):
fsentences = []
for sentence in sentences:
fsentence = Sentence()
for token in sentence:
ftoken = Token(token['form'])
if label:
ftoken.add_tag(label, token[label])
fsentence.add_token(ftoken)
fsentences.append(fsentence)
return SentenceDataset(fsentences)
def predict(model, sentence):
csentence = [{'form': word} for word in sentence]
fsentence = conllu2flair([csentence])[0]
model.predict(fsentence)
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)]
with open('train-pl-full.conllu', encoding='utf-8') as trainfile:
trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': nolabel2o}))
with open('test-pl-full.conllu', encoding='utf-8') as testfile:
testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': nolabel2o}))
random.seed(42)
torch.manual_seed(42)
if torch.cuda.is_available():
torch.cuda.manual_seed(0)
torch.cuda.manual_seed_all(0)
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
corpus = Corpus(train=conllu2flair(trainset, 'slot'), test=conllu2flair(testset, 'slot'))
tag_dictionary = corpus.make_tag_dictionary(tag_type='slot')
embedding_types = [
WordEmbeddings('pl'),
FlairEmbeddings('pl-forward'),
FlairEmbeddings('pl-backward'),
CharacterEmbeddings(),
]
embeddings = StackedEmbeddings(embeddings=embedding_types)
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
tag_dictionary=tag_dictionary,
tag_type='slot', use_crf=True)
"""
trainer = ModelTrainer(tagger, corpus)
trainer.train('slot-model-pl',
learning_rate=0.1,
mini_batch_size=32,
max_epochs=10,
train_with_dev=True)
"""
try:
model = SequenceTagger.load('slot-model-pl/best-model.pt')
except:
model = SequenceTagger.load('slot-model-pl/final-model.pt')
print(tabulate(predict(model, 'Jeden bilet na imię Jan Kowalski na film Batman'.split())))