86 lines
2.7 KiB
Python
86 lines
2.7 KiB
Python
from conllu import parse_incr
|
|
from flair.data import Corpus, Sentence, Token
|
|
from flair.datasets import SentenceDataset
|
|
from flair.embeddings import StackedEmbeddings
|
|
from flair.embeddings import WordEmbeddings
|
|
from flair.embeddings import CharacterEmbeddings
|
|
from flair.embeddings import FlairEmbeddings
|
|
from flair.models import SequenceTagger
|
|
from flair.trainers import ModelTrainer
|
|
import random
|
|
import torch
|
|
from tabulate import tabulate
|
|
|
|
fields = ['id', 'form', 'frame', 'slot']
|
|
|
|
|
|
def nolabel2o(line, i):
|
|
return 'O' if line[i] == 'NoLabel' else line[i]
|
|
|
|
|
|
def conllu2flair(sentences, label=None):
|
|
fsentences = []
|
|
for sentence in sentences:
|
|
fsentence = Sentence()
|
|
for token in sentence:
|
|
ftoken = Token(token['form'])
|
|
if label:
|
|
ftoken.add_tag(label, token[label])
|
|
fsentence.add_token(ftoken)
|
|
fsentences.append(fsentence)
|
|
return SentenceDataset(fsentences)
|
|
|
|
|
|
def predict(model, sentence):
|
|
csentence = [{'form': word} for word in sentence]
|
|
fsentence = conllu2flair([csentence])[0]
|
|
model.predict(fsentence)
|
|
return [(token, ftoken.get_tag('slot').value) for token, ftoken in zip(sentence, fsentence)]
|
|
|
|
|
|
with open('train-pl-full.conllu', encoding='utf-8') as trainfile:
|
|
trainset = list(parse_incr(trainfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
|
with open('test-pl-full.conllu', encoding='utf-8') as testfile:
|
|
testset = list(parse_incr(testfile, fields=fields, field_parsers={'slot': nolabel2o}))
|
|
|
|
random.seed(42)
|
|
torch.manual_seed(42)
|
|
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed(0)
|
|
torch.cuda.manual_seed_all(0)
|
|
torch.backends.cudnn.enabled = False
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
|
|
corpus = Corpus(train=conllu2flair(trainset, 'slot'), test=conllu2flair(testset, 'slot'))
|
|
|
|
tag_dictionary = corpus.make_tag_dictionary(tag_type='slot')
|
|
|
|
embedding_types = [
|
|
WordEmbeddings('pl'),
|
|
FlairEmbeddings('pl-forward'),
|
|
FlairEmbeddings('pl-backward'),
|
|
CharacterEmbeddings(),
|
|
]
|
|
|
|
embeddings = StackedEmbeddings(embeddings=embedding_types)
|
|
tagger = SequenceTagger(hidden_size=256, embeddings=embeddings,
|
|
tag_dictionary=tag_dictionary,
|
|
tag_type='slot', use_crf=True)
|
|
|
|
"""
|
|
trainer = ModelTrainer(tagger, corpus)
|
|
trainer.train('slot-model-pl',
|
|
learning_rate=0.1,
|
|
mini_batch_size=32,
|
|
max_epochs=10,
|
|
train_with_dev=True)
|
|
"""
|
|
try:
|
|
model = SequenceTagger.load('slot-model-pl/best-model.pt')
|
|
except:
|
|
model = SequenceTagger.load('slot-model-pl/final-model.pt')
|
|
|
|
print(tabulate(predict(model, 'Jeden bilet na imię Jan Kowalski na film Batman'.split())))
|