7.4 KiB
7.4 KiB
# https://gonito.net/challenge/paranormal-or-skeptic
# dane + wyniki -> https://git.wmi.amu.edu.pl/s444380/paranormal-or-skeptic-ISI-public
import lzma
import torch
import numpy as np
from gensim import downloader
BATCH_SIZE = 10
EPOCHS = 10
FEATURES = 200
class NeuralNetworkModel(torch.nn.Module):
def __init__(self):
super(NeuralNetworkModel, self).__init__()
self.fc1 = torch.nn.Linear(FEATURES, 1000)
self.fc2 = torch.nn.Linear(1000, 500)
self.fc3 = torch.nn.Linear(500, 1)
def forward(self, x):
x = self.fc1(x)
x = torch.relu(x)
x = self.fc2(x)
x = torch.relu(x)
x = self.fc3(x)
x = torch.sigmoid(x)
return x
# Read train files
with lzma.open("train/in.tsv.xz", "rt", encoding="utf-8") as train_file:
x_train = [x.strip().lower() for x in train_file.readlines()]
with open("train/expected.tsv", "r", encoding="utf-8") as train_file:
y_train = np.array([int(x.strip()) for x in train_file.readlines()])
word2vec = downloader.load("glove-twitter-200")
x_train_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
or [np.zeros(FEATURES)], axis=0) for doc in x_train]
model = NeuralNetworkModel()
criterion = torch.nn.BCELoss()
optimizer = torch.optim.ASGD(model.parameters(), lr=0.05)
for epoch in range(EPOCHS):
print(epoch)
loss_score = 0
acc_score = 0
items_total = 0
for i in range(0, y_train.shape[0], BATCH_SIZE):
x = x_train_w2v[i:i+BATCH_SIZE]
x = torch.tensor(np.array(x).astype(np.float32))
y = y_train[i:i+BATCH_SIZE]
y = torch.tensor(y.astype(np.float32)).reshape(-1, 1)
y_pred = model(x)
acc_score += torch.sum((y_pred > 0.5) == y).item()
items_total += y.shape[0]
optimizer.zero_grad()
loss = criterion(y_pred, y)
loss.backward()
optimizer.step()
loss_score += loss.item() * y.shape[0]
print((loss_score / items_total), (acc_score / items_total))
0 0.5444966091123856 0.7128072132302411 1 0.5187017436751196 0.7303153888921503 2 0.5117590330604093 0.7348944502191112 3 0.5075270808198805 0.7376916143781145 4 0.5043017516287736 0.7403230206610286 5 0.5016950109024928 0.7418977204838748 6 0.49942716640870777 0.7432134236253319 7 0.49766424133924386 0.7448606425189672 8 0.49617289846816215 0.745534033890579 9 0.49471875689137873 0.7467116054686286
# Read dev files
with lzma.open("dev-0/in.tsv.xz", "rt", encoding="utf-8") as dev_file:
x_dev = [x.strip().lower() for x in dev_file.readlines()]
x_dev_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
or [np.zeros(FEATURES)], axis=0) for doc in x_dev]
y_dev = []
with torch.no_grad():
for i in range(0, len(x_dev_w2v), BATCH_SIZE):
x = x_dev_w2v[i:i+BATCH_SIZE]
x = torch.tensor(np.array(x).astype(np.float32))
outputs = model(x)
y = (outputs > 0.5)
y_dev.extend(y)
with open("dev-0/out.tsv", "w", encoding="utf-8") as f:
f.writelines([str(y.int()[0].item()) + "\n" for y in y_dev])
# Read test files
with lzma.open("test-A/in.tsv.xz", "rt", encoding="utf-8") as test_file:
x_test = [x.strip().lower() for x in test_file.readlines()]
x_test_w2v = [np.mean([word2vec[word.lower()] for word in doc.split() if word.lower() in word2vec]
or [np.zeros(FEATURES)], axis=0) for doc in x_test]
y_test = []
with torch.no_grad():
for i in range(0, len(x_test_w2v), BATCH_SIZE):
x = x_test_w2v[i:i+BATCH_SIZE]
x = torch.tensor(np.array(x).astype(np.float32))
outputs = model(x)
y = (outputs > 0.5)
y_test.extend(y)
with open("test-A/out.tsv", "w", encoding="utf-8") as f:
f.writelines([str(y.int()[0].item()) + "\n" for y in y_test])