macros
This commit is contained in:
parent
401a9233b9
commit
1b0ca437c8
@ -1047,6 +1047,37 @@ A square hermitian matrix $A$ of size $n$.
|
|||||||
|
|
||||||
field of fractions
|
field of fractions
|
||||||
|
|
||||||
|
\section{\hfill\DTMdate{2019-06-03}}
|
||||||
|
\begin{theorem}
|
||||||
|
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4(K)$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
|
||||||
|
\[
|
||||||
|
u(K) \geq g_4(K)
|
||||||
|
\]
|
||||||
|
\begin{proof}
|
||||||
|
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
|
||||||
|
\\
|
||||||
|
\noindent
|
||||||
|
Remove from $\Delta$ the two self intersecting and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$ .
|
||||||
|
\end{proof}
|
||||||
|
???????????????????\\
|
||||||
|
\begin{example}
|
||||||
|
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
|
||||||
|
\end{example}
|
||||||
|
\subsection{Surgery}
|
||||||
|
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^3$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \{pt\}]}$ and ${\beta=[\{pt\} \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
|
||||||
|
Consider an induced map on homology group:
|
||||||
|
\begin{align*}
|
||||||
|
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
|
||||||
|
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
|
||||||
|
\phi_* &=
|
||||||
|
\begin{pmatrix}
|
||||||
|
p & q\\
|
||||||
|
r & s
|
||||||
|
\end{pmatrix}
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
|
\end{theorem}
|
||||||
|
|
||||||
|
|
||||||
\section{balagan}
|
\section{balagan}
|
||||||
|
|
||||||
@ -1064,7 +1095,7 @@ Therefore $\dim_{\mathbb{Q}} \quot{H_1(Y)}{V}
|
|||||||
$.
|
$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\noindent
|
\noindent
|
||||||
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on 4\\
|
Suppose $g(K) = 0$ ($K$ is slice). Then $H_1(\Sigma, \mathbb{Z}) \cong H_1(Y, \mathbb{Z})$. Let $g_{\Sigma}$ be the genus of $\Sigma$, $\dim H_1(Y, \mathbb{Z}) = 2g_{\Sigma}$. Then the Seifert form $V$ on a $4$ - manifolds???\\
|
||||||
?????\\
|
?????\\
|
||||||
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
has a subspace of dimension $g_{\Sigma}$ on which it is zero:
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user