Compare commits
4 Commits
Author | SHA1 | Date | |
---|---|---|---|
|
962ca45b2c | ||
|
43dbf81d83 | ||
|
023a4e4361 | ||
|
dbadedfc1c |
5272
dev-0/out.tsv
Normal file
5272
dev-0/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
92
generate.py
Normal file
92
generate.py
Normal file
@ -0,0 +1,92 @@
|
|||||||
|
import pandas as pd
|
||||||
|
from transformers import BertTokenizer, AdamW, AutoModelForSequenceClassification
|
||||||
|
import torch
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from torch.utils.data import TensorDataset, DataLoader, RandomSampler
|
||||||
|
import torch.nn as nn
|
||||||
|
from sklearn.utils.class_weight import compute_class_weight
|
||||||
|
import numpy as np
|
||||||
|
from sklearn.metrics import classification_report
|
||||||
|
from sklearn.metrics import accuracy_score, f1_score
|
||||||
|
from transformers import BertTokenizerFast, BertForSequenceClassification
|
||||||
|
from transformers import Trainer, TrainingArguments
|
||||||
|
import csv
|
||||||
|
|
||||||
|
class Dataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, encodings, labels):
|
||||||
|
self.encodings = encodings
|
||||||
|
self.labels = labels
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
|
||||||
|
item["labels"] = torch.tensor([self.labels[idx]])
|
||||||
|
return item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.labels)
|
||||||
|
|
||||||
|
def save_tsv_result(path, data):
|
||||||
|
with open(path, "w") as save:
|
||||||
|
writer = csv.writer(save, delimiter='\t', lineterminator='\n')
|
||||||
|
for value in [str(x) for x in data]:
|
||||||
|
writer.writerow([value])
|
||||||
|
|
||||||
|
def predictions_for_set(inputs, masks):
|
||||||
|
predictions = []
|
||||||
|
with torch.no_grad():
|
||||||
|
batch_size = 60
|
||||||
|
for i in range(0, len(inputs), batch_size):
|
||||||
|
preds = model(inputs[i: i + batch_size].to(device),
|
||||||
|
masks[i: i + batch_size].to(device))
|
||||||
|
preds = preds.logits.detach().cpu().numpy()
|
||||||
|
preds = np.argmax(preds, axis=1)
|
||||||
|
predictions += preds.tolist()
|
||||||
|
return predictions
|
||||||
|
|
||||||
|
device = torch.device('cuda')
|
||||||
|
|
||||||
|
# train_texts = \
|
||||||
|
# pd.read_csv('train/in.tsv.xz', compression='xz', sep='\t',
|
||||||
|
# header=None, error_bad_lines=False, quoting=3)[0].tolist()
|
||||||
|
# train_labels = pd.read_csv(
|
||||||
|
# 'train/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()
|
||||||
|
dev_texts = pd.read_csv('dev-0/in.tsv.xz', compression='xz',
|
||||||
|
sep='\t', header=None, quoting=3)[0].tolist()
|
||||||
|
dev_labels = pd.read_csv('dev-0/expected.tsv', sep='\t',
|
||||||
|
header=None, quoting=3)[0].tolist()
|
||||||
|
test_texts = pd.read_csv('test-A/in.tsv.xz', compression='xz', sep='\t',
|
||||||
|
header=None, error_bad_lines=False, quoting=3)[0].tolist()
|
||||||
|
|
||||||
|
model_name = "bert-base-uncased-pretrained"
|
||||||
|
|
||||||
|
model = BertForSequenceClassification.from_pretrained(
|
||||||
|
model_name, num_labels=len(pd.unique(dev_labels))).to(device)
|
||||||
|
max_length = 512
|
||||||
|
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
|
||||||
|
|
||||||
|
# model.load_pretrained(model_path)
|
||||||
|
# tokenizer.load_pretrainded(model_path)
|
||||||
|
|
||||||
|
# train_encodings = tokenizer(
|
||||||
|
# train_texts, truncation=True, padding=True, max_length=max_length)
|
||||||
|
valid_encodings = tokenizer(
|
||||||
|
dev_texts, truncation=True, padding=True, max_length=max_length)
|
||||||
|
test_encodings = tokenizer(
|
||||||
|
test_texts, truncation=True, padding=True, max_length=max_length)
|
||||||
|
|
||||||
|
input_ids_val = torch.tensor(valid_encodings.data['input_ids'])
|
||||||
|
attention_mask_val = torch.tensor(valid_encodings.data['attention_mask'])
|
||||||
|
|
||||||
|
input_ids_test = torch.tensor(test_encodings.data['input_ids'])
|
||||||
|
attention_mask_test = torch.tensor(test_encodings.data['attention_mask'])
|
||||||
|
|
||||||
|
predictions = predictions_for_set(input_ids_val, attention_mask_val)
|
||||||
|
print("Predictions for dev set:")
|
||||||
|
print(classification_report(dev_labels, predictions))
|
||||||
|
print(accuracy_score(dev_labels, predictions))
|
||||||
|
print(f1_score(dev_labels, predictions))
|
||||||
|
|
||||||
|
save_tsv_result("dev-0/out.tsv", predictions)
|
||||||
|
|
||||||
|
predictions = predictions_for_set(input_ids_test, attention_mask_test)
|
||||||
|
save_tsv_result("test-A/out.tsv", predictions)
|
90
main.py
Normal file
90
main.py
Normal file
@ -0,0 +1,90 @@
|
|||||||
|
import torch
|
||||||
|
from transformers.file_utils import is_torch_available
|
||||||
|
from transformers import BertTokenizerFast, BertForSequenceClassification
|
||||||
|
from transformers import Trainer, TrainingArguments
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
from sklearn.metrics import accuracy_score
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
class Dataset(torch.utils.data.Dataset):
|
||||||
|
def __init__(self, encodings, labels):
|
||||||
|
self.encodings = encodings
|
||||||
|
self.labels = labels
|
||||||
|
|
||||||
|
def __getitem__(self, idx):
|
||||||
|
item = {k: torch.tensor(v[idx]) for k, v in self.encodings.items()}
|
||||||
|
item["labels"] = torch.tensor([self.labels[idx]])
|
||||||
|
return item
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.labels)
|
||||||
|
|
||||||
|
|
||||||
|
def set_seed(seed: int):
|
||||||
|
random.seed(seed)
|
||||||
|
np.random.seed(seed)
|
||||||
|
if is_torch_available():
|
||||||
|
torch.manual_seed(seed)
|
||||||
|
torch.cuda.manual_seed_all(seed)
|
||||||
|
|
||||||
|
def compute_metrics(pred):
|
||||||
|
labels = pred.label_ids
|
||||||
|
preds = pred.predictions.argmax(-1)
|
||||||
|
acc = accuracy_score(labels, preds)
|
||||||
|
return {
|
||||||
|
'accuracy': acc,
|
||||||
|
}
|
||||||
|
|
||||||
|
set_seed(1)
|
||||||
|
|
||||||
|
train_texts = \
|
||||||
|
pd.read_csv('train/in.tsv.xz', compression='xz', sep='\t', header=None, error_bad_lines=False, quoting=3)[0].tolist()[:25000]
|
||||||
|
train_labels = pd.read_csv('train/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()[:25000]
|
||||||
|
dev_texts = pd.read_csv('dev-0/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||||
|
dev_labels = pd.read_csv('dev-0/expected.tsv', sep='\t', header=None, quoting=3)[0].tolist()[:1000]
|
||||||
|
# test_texts = pd.read_table('test-A/in.tsv.xz', compression='xz', sep='\t', header=None, quoting=3)
|
||||||
|
|
||||||
|
model_name = "bert-base-uncased"
|
||||||
|
max_length = 25
|
||||||
|
tokenizer = BertTokenizerFast.from_pretrained(model_name, do_lower_case=True)
|
||||||
|
|
||||||
|
train_encodings = tokenizer(train_texts, truncation=True, padding=True, max_length=max_length)
|
||||||
|
valid_encodings = tokenizer(dev_texts, truncation=True, padding=True, max_length=max_length)
|
||||||
|
|
||||||
|
train_dataset = Dataset(train_encodings, train_labels)
|
||||||
|
valid_dataset = Dataset(valid_encodings, dev_labels)
|
||||||
|
|
||||||
|
model = BertForSequenceClassification.from_pretrained(
|
||||||
|
model_name, num_labels=len(pd.unique(train_labels))).to("cuda")
|
||||||
|
|
||||||
|
training_args = TrainingArguments(
|
||||||
|
output_dir='./results', # output directory
|
||||||
|
num_train_epochs=1, # total number of training epochs
|
||||||
|
per_device_train_batch_size=60, # batch size per device during training
|
||||||
|
per_device_eval_batch_size=60, # batch size for evaluation
|
||||||
|
warmup_steps=100, # number of warmup steps for learning rate scheduler
|
||||||
|
weight_decay=0.01, # strength of weight decay
|
||||||
|
logging_dir='./logs', # directory for storing logs
|
||||||
|
load_best_model_at_end=True, # load the best model when finished training (default metric is loss)
|
||||||
|
# but you can specify `metric_for_best_model` argument to change to accuracy or other metric
|
||||||
|
logging_steps=200, # log & save weights each logging_steps
|
||||||
|
evaluation_strategy="steps", # evaluate each `logging_steps`
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer = Trainer(
|
||||||
|
model=model, # the instantiated Transformers model to be trained
|
||||||
|
args=training_args, # training arguments, defined above
|
||||||
|
train_dataset=train_dataset, # training dataset
|
||||||
|
eval_dataset=valid_dataset, # evaluation dataset
|
||||||
|
compute_metrics=compute_metrics, # the callback that computes metrics of interest
|
||||||
|
)
|
||||||
|
|
||||||
|
trainer.train()
|
||||||
|
|
||||||
|
trainer.evaluate()
|
||||||
|
|
||||||
|
model_path = "bert-base-uncased-pretrained"
|
||||||
|
model.save_pretrained(model_path)
|
||||||
|
tokenizer.save_pretrained(model_path)
|
5152
test-A/out.tsv
Normal file
5152
test-A/out.tsv
Normal file
File diff suppressed because it is too large
Load Diff
Loading…
Reference in New Issue
Block a user