forked from kubapok/en-ner-conll-2003
Compare commits
No commits in common. "master" and "master" have entirely different histories.
@ -1,438 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e574fca4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\grzyb\\anaconda3\\lib\\site-packages\\gensim\\similarities\\__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n",
|
||||
" warnings.warn(msg)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import csv\n",
|
||||
"import os.path\n",
|
||||
"import shutil\n",
|
||||
"import torch\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"from itertools import islice\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from torchtext.vocab import Vocab\n",
|
||||
"from collections import Counter\n",
|
||||
"from nltk.tokenize import word_tokenize\n",
|
||||
"import gensim.downloader as api\n",
|
||||
"from gensim.models.word2vec import Word2Vec"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "b476f295",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Collecting gensim\n",
|
||||
" Downloading gensim-4.0.1-cp38-cp38-win_amd64.whl (23.9 MB)\n",
|
||||
"Requirement already satisfied: scipy>=0.18.1 in c:\\users\\grzyb\\anaconda3\\lib\\site-packages (from gensim) (1.6.2)\n",
|
||||
"Collecting Cython==0.29.21\n",
|
||||
" Downloading Cython-0.29.21-cp38-cp38-win_amd64.whl (1.7 MB)\n",
|
||||
"Requirement already satisfied: numpy>=1.11.3 in c:\\users\\grzyb\\anaconda3\\lib\\site-packages (from gensim) (1.20.1)\n",
|
||||
"Collecting smart-open>=1.8.1\n",
|
||||
" Downloading smart_open-5.1.0-py3-none-any.whl (57 kB)\n",
|
||||
"Installing collected packages: smart-open, Cython, gensim\n",
|
||||
" Attempting uninstall: Cython\n",
|
||||
" Found existing installation: Cython 0.29.23\n",
|
||||
" Uninstalling Cython-0.29.23:\n",
|
||||
" Successfully uninstalled Cython-0.29.23\n",
|
||||
"Successfully installed Cython-0.29.21 gensim-4.0.1 smart-open-5.1.0\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip install gensim"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "fbe3a657",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class NERModel(torch.nn.Module):\n",
|
||||
"\n",
|
||||
" def __init__(self,):\n",
|
||||
" super(NERModel, self).__init__()\n",
|
||||
" self.emb = torch.nn.Embedding(23628,200)\n",
|
||||
" self.fc1 = torch.nn.Linear(600,9)\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" x = self.emb(x)\n",
|
||||
" x = x.reshape(600) \n",
|
||||
" x = self.fc1(x)\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "3497a580",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def process_output(lines):\n",
|
||||
" result = []\n",
|
||||
" for line in lines:\n",
|
||||
" last_label = None\n",
|
||||
" new_line = []\n",
|
||||
" for label in line:\n",
|
||||
" if(label != \"O\" and label[0:2] == \"I-\"):\n",
|
||||
" if last_label == None or last_label == \"O\":\n",
|
||||
" label = label.replace('I-', 'B-')\n",
|
||||
" else:\n",
|
||||
" label = \"I-\" + last_label[2:]\n",
|
||||
" last_label = label\n",
|
||||
" new_line.append(label)\n",
|
||||
" x = (\" \".join(new_line))\n",
|
||||
" result.append(\" \".join(new_line))\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3e78d902",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def build_vocab(dataset):\n",
|
||||
" counter = Counter()\n",
|
||||
" for document in dataset:\n",
|
||||
" counter.update(document)\n",
|
||||
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "ec8537cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def data_process(dt):\n",
|
||||
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "847c958a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def labels_process(dt):\n",
|
||||
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 24,
|
||||
"id": "66bee163",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict(input_tokens, labels):\n",
|
||||
"\n",
|
||||
" results = []\n",
|
||||
" \n",
|
||||
" for i in range(len(input_tokens)):\n",
|
||||
" line_results = []\n",
|
||||
" for j in range(1, len(input_tokens[i]) - 1):\n",
|
||||
" x = input_tokens[i][j-1: j+2].to(device_gpu)\n",
|
||||
" predicted = ner_model(x.long())\n",
|
||||
" result = torch.argmax(predicted)\n",
|
||||
" label = labels[result]\n",
|
||||
" line_results.append(label)\n",
|
||||
" results.append(line_results)\n",
|
||||
"\n",
|
||||
" return results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "39046f3f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = pd.read_csv('train/train.tsv.xz', sep='\\t', names=['a', 'b'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "9b40a8b6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"labels = ['O','B-LOC', 'I-LOC','B-MISC', 'I-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'I-PER'] \n",
|
||||
"train[\"a\"]=train[\"a\"].apply(lambda x: [labels.index(y) for y in x.split()])\n",
|
||||
"train[\"b\"]=train[\"b\"].apply(lambda x: x.split())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "02a12cbd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vocab = build_vocab(train['b'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "8cc6d19d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
" tensors = []\n",
|
||||
"\n",
|
||||
" for sent in train[\"b\"]:\n",
|
||||
" sent_tensor = torch.tensor(())\n",
|
||||
" for word in sent:\n",
|
||||
" temp = torch.tensor([word[0].isupper(), word[0].isdigit()])\n",
|
||||
" sent_tensor = torch.cat((sent_tensor, temp))\n",
|
||||
"\n",
|
||||
" tensors.append(sent_tensor)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "690085f6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'NVIDIA GeForce RTX 2060'"
|
||||
]
|
||||
},
|
||||
"execution_count": 15,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"torch.cuda.get_device_name(0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "64b2d751",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"device_gpu = torch.device(\"cuda:0\")\n",
|
||||
"ner_model = NERModel().to(device_gpu)\n",
|
||||
"criterion = torch.nn.CrossEntropyLoss()\n",
|
||||
"optimizer = torch.optim.Adam(ner_model.parameters())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "094d7e69",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_labels = labels_process(train['a'])\n",
|
||||
"train_tokens_ids = data_process(train['b'])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "17291b41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_tensors = [torch.cat((token, tensors[i])) for i, token in enumerate(train_tokens_ids)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "045b7186",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"epoch: 0\n",
|
||||
"f1: 0.6373470953763748\n",
|
||||
"acc: 0.9116419913061858\n",
|
||||
"epoch: 1\n",
|
||||
"f1: 0.7973076923076923\n",
|
||||
"acc: 0.9540771782783307\n",
|
||||
"epoch: 2\n",
|
||||
"f1: 0.8640167364016735\n",
|
||||
"acc: 0.9702287410511612\n",
|
||||
"epoch: 3\n",
|
||||
"f1: 0.9038441719055962\n",
|
||||
"acc: 0.9793820591289644\n",
|
||||
"epoch: 4\n",
|
||||
"f1: 0.928903400400047\n",
|
||||
"acc: 0.9850890978100043\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for epoch in range(5):\n",
|
||||
" acc_score = 0\n",
|
||||
" prec_score = 0\n",
|
||||
" selected_items = 0\n",
|
||||
" recall_score = 0\n",
|
||||
" relevant_items = 0\n",
|
||||
" items_total = 0\n",
|
||||
" ner_model.train()\n",
|
||||
" for i in range(len(train_labels)):\n",
|
||||
" for j in range(1, len(train_labels[i]) - 1):\n",
|
||||
" X = train_tensors[i][j - 1: j + 2].to(device_gpu)\n",
|
||||
"\n",
|
||||
" Y = train_labels[i][j: j + 1].to(device_gpu)\n",
|
||||
"\n",
|
||||
" Y_predictions = ner_model(X.long())\n",
|
||||
"\n",
|
||||
" acc_score += int(torch.argmax(Y_predictions) == Y)\n",
|
||||
" if torch.argmax(Y_predictions) != 0:\n",
|
||||
" selected_items += 1\n",
|
||||
" if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n",
|
||||
" prec_score += 1\n",
|
||||
" if Y.item() != 0:\n",
|
||||
" relevant_items += 1\n",
|
||||
" if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n",
|
||||
" recall_score += 1\n",
|
||||
"\n",
|
||||
" items_total += 1\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = criterion(Y_predictions.unsqueeze(0), Y)\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()\n",
|
||||
"\n",
|
||||
" precision = prec_score / selected_items\n",
|
||||
" recall = recall_score / relevant_items\n",
|
||||
" f1_score = (2 * precision * recall) / (precision + recall)\n",
|
||||
" print(f'epoch: {epoch}')\n",
|
||||
" print(f'f1: {f1_score}')\n",
|
||||
" print(f'acc: {acc_score / items_total}')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 28,
|
||||
"id": "f75aa5e2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def create_tensors_list(data):\n",
|
||||
" tensors = []\n",
|
||||
"\n",
|
||||
" for sent in data[\"a\"]:\n",
|
||||
" sent_tensor = torch.tensor(())\n",
|
||||
" for word in sent:\n",
|
||||
" temp = torch.tensor([word[0].isupper(), word[0].isdigit()])\n",
|
||||
" sent_tensor = torch.cat((sent_tensor, temp))\n",
|
||||
"\n",
|
||||
" tensors.append(sent_tensor)\n",
|
||||
"\n",
|
||||
" return tensors"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 29,
|
||||
"id": "49215802",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dev = pd.read_csv('dev-0/in.tsv', sep='\\t', names=['a'])\n",
|
||||
"dev[\"a\"] = dev[\"a\"].apply(lambda x: x.split())\n",
|
||||
"\n",
|
||||
"dev_tokens_ids = data_process(dev[\"a\"])\n",
|
||||
"\n",
|
||||
"dev_extra_tensors = create_tensors_list(dev)\n",
|
||||
"\n",
|
||||
"dev_tensors = [torch.cat((token, dev_extra_tensors[i])) for i, token in enumerate(dev_tokens_ids)]\n",
|
||||
"\n",
|
||||
"results = predict(dev_tensors, labels)\n",
|
||||
"results_processed = process_output(results)\n",
|
||||
"\n",
|
||||
"with open(\"dev-0/out.tsv\", \"w\") as f:\n",
|
||||
" for line in results_processed:\n",
|
||||
" f.write(line + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 30,
|
||||
"id": "8c5b007e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test = pd.read_csv('test-A/in.tsv', sep='\\t', names=['a'])\n",
|
||||
"test[\"a\"] = test[\"a\"].apply(lambda x: x.split())\n",
|
||||
"\n",
|
||||
"test_tokens_ids = data_process(test[\"a\"])\n",
|
||||
"\n",
|
||||
"test_extra_tensors = create_tensors_list(test)\n",
|
||||
"\n",
|
||||
"test_tensors = [torch.cat((token, test_extra_tensors[i])) for i, token in enumerate(test_tokens_ids)]\n",
|
||||
"\n",
|
||||
"results = predict(test_tensors, labels)\n",
|
||||
"results_processed = process_output(results)\n",
|
||||
"\n",
|
||||
"with open(\"test-A/out.tsv\", \"w\") as f:\n",
|
||||
" for line in results_processed:\n",
|
||||
" f.write(line + \"\\n\")"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,6 +0,0 @@
|
||||
{
|
||||
"cells": [],
|
||||
"metadata": {},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
@ -1,376 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "bce0cfa7",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\grzyb\\anaconda3\\lib\\site-packages\\gensim\\similarities\\__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n",
|
||||
" warnings.warn(msg)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from os import sep\n",
|
||||
"from nltk import word_tokenize\n",
|
||||
"import pandas as pd\n",
|
||||
"import torch\n",
|
||||
"from TorchCRF import CRF\n",
|
||||
"import gensim\n",
|
||||
"from torch._C import device\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"from torchtext.vocab import Vocab\n",
|
||||
"from collections import Counter, OrderedDict\n",
|
||||
"import spacy\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from torch.utils.data import DataLoader\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.metrics import accuracy_score, f1_score, classification_report\n",
|
||||
"import csv\n",
|
||||
"import pickle\n",
|
||||
"\n",
|
||||
"import lzma\n",
|
||||
"import re\n",
|
||||
"import itertools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "67ace382",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"Requirement already satisfied: pytorch-crf in c:\\users\\grzyb\\anaconda3\\lib\\site-packages (0.7.2)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"!pip3 install pytorch-crf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "adc9a4de",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"ename": "ModuleNotFoundError",
|
||||
"evalue": "No module named 'torchcrf'",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[1;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[1;32m<ipython-input-3-2a643b4fc1bb>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 18\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 19\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mtorch\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 20\u001b[1;33m \u001b[1;32mfrom\u001b[0m \u001b[0mtorchcrf\u001b[0m \u001b[1;32mimport\u001b[0m \u001b[0mCRF\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
||||
"\u001b[1;31mModuleNotFoundError\u001b[0m: No module named 'torchcrf'"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import numpy as np\n",
|
||||
"import gensim\n",
|
||||
"import torch\n",
|
||||
"import pandas as pd\n",
|
||||
"import seaborn as sns\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"\n",
|
||||
"from torchtext.vocab import Vocab\n",
|
||||
"from collections import Counter\n",
|
||||
"\n",
|
||||
"from sklearn.datasets import fetch_20newsgroups\n",
|
||||
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
|
||||
"\n",
|
||||
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
|
||||
"from sklearn.metrics import accuracy_score\n",
|
||||
"\n",
|
||||
"from tqdm.notebook import tqdm\n",
|
||||
"\n",
|
||||
"import torch\n",
|
||||
"from torchcrf import CRF"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "6695751c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def build_vocab(dataset):\n",
|
||||
" counter = Counter()\n",
|
||||
" for document in dataset:\n",
|
||||
" counter.update(document)\n",
|
||||
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "d247e4fe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def data_process(dt, vocab):\n",
|
||||
" return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_scores(y_true, y_pred):\n",
|
||||
" acc_score = 0\n",
|
||||
" tp = 0\n",
|
||||
" fp = 0\n",
|
||||
" selected_items = 0\n",
|
||||
" relevant_items = 0\n",
|
||||
" for p, t in zip(y_pred, y_true):\n",
|
||||
" if p == t:\n",
|
||||
" acc_score += 1\n",
|
||||
" if p > 0 and p == t:\n",
|
||||
" tp += 1\n",
|
||||
" if p > 0:\n",
|
||||
" selected_items += 1\n",
|
||||
" if t > 0:\n",
|
||||
" relevant_items += 1\n",
|
||||
"\n",
|
||||
" if selected_items == 0:\n",
|
||||
" precision = 1.0\n",
|
||||
" else:\n",
|
||||
" precision = tp / selected_items\n",
|
||||
"\n",
|
||||
" if relevant_items == 0:\n",
|
||||
" recall = 1.0\n",
|
||||
" else:\n",
|
||||
" recall = tp / relevant_items\n",
|
||||
"\n",
|
||||
" if precision + recall == 0.0:\n",
|
||||
" f1 = 0.0\n",
|
||||
" else:\n",
|
||||
" f1 = 2 * precision * recall / (precision + recall)\n",
|
||||
"\n",
|
||||
" return precision, recall, f1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "b6061642",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def process_output(lines):\n",
|
||||
" result = []\n",
|
||||
" for line in lines:\n",
|
||||
" last_label = None\n",
|
||||
" new_line = []\n",
|
||||
" for label in line:\n",
|
||||
" if(label != \"O\" and label[0:2] == \"I-\"):\n",
|
||||
" if last_label == None or last_label == \"O\":\n",
|
||||
" label = label.replace('I-', 'B-')\n",
|
||||
" else:\n",
|
||||
" label = \"I-\" + last_label[2:]\n",
|
||||
" last_label = label\n",
|
||||
" new_line.append(label)\n",
|
||||
" x = (\" \".join(new_line))\n",
|
||||
" result.append(\" \".join(new_line))\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3d7c4dd3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class GRU(torch.nn.Module):\n",
|
||||
" def __init__(self):\n",
|
||||
" super(GRU, self).__init__()\n",
|
||||
" self.emb = torch.nn.Embedding(len(vocab_x.itos),100)\n",
|
||||
" self.dropout = torch.nn.Dropout(0.2)\n",
|
||||
" self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)\n",
|
||||
" self.fc1 = torch.nn.Linear(2* 256 , 9)\n",
|
||||
" \n",
|
||||
" def forward(self, x):\n",
|
||||
" emb = torch.relu(self.emb(x))\n",
|
||||
" emb = self.dropout(emb) \n",
|
||||
" gru_output, h_n = self.rec(emb) \n",
|
||||
" out_weights = self.fc1(gru_output)\n",
|
||||
" return out_weights"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cd5e419d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab):\n",
|
||||
" Y_true = []\n",
|
||||
" Y_pred = []\n",
|
||||
" model.eval()\n",
|
||||
" crf.eval()\n",
|
||||
" for i in tqdm(range(len(dev_labels_tokens))):\n",
|
||||
" batch_tokens = dev_tokens[i].unsqueeze(0)\n",
|
||||
" tags = list(dev_labels_tokens[i].numpy())\n",
|
||||
" Y_true += tags\n",
|
||||
"\n",
|
||||
" Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n",
|
||||
" Y_batch_pred = torch.argmax(Y_batch_pred_weights, 1)\n",
|
||||
" Y_pred += [crf.decode(Y_batch_pred)[0]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "c808bbd5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = pd.read_csv('train/train.tsv', sep='\\t',\n",
|
||||
" names=['labels', 'document'])\n",
|
||||
"\n",
|
||||
"Y_train = [y.split(sep=\" \") for y in train['labels'].values]\n",
|
||||
"X_train = [x.split(sep=\" \") for x in train['document'].values]\n",
|
||||
"\n",
|
||||
"dev = pd.read_csv('dev-0/in.tsv', sep='\\t', names=['document'])\n",
|
||||
"exp = pd.read_csv('dev-0/expected.tsv', sep='\\t', names=['labels'])\n",
|
||||
"X_dev = [x.split(sep=\" \") for x in dev['document'].values]\n",
|
||||
"Y_dev = [y.split(sep=\" \") for y in exp['labels'].values]\n",
|
||||
"\n",
|
||||
"test = pd.read_csv('test-A/in.tsv', sep='\\t', names=['document'])\n",
|
||||
"X_test = test['document'].values"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "79485c9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vocab_x = build_vocab(X_train)\n",
|
||||
"vocab_y = build_vocab(Y_train)\n",
|
||||
"train_tokens = data_process(X_train, vocab_x)\n",
|
||||
"labels_tokens = data_process(Y_train, vocab_y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "3726c82a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"torch.cuda.get_device_name(0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "f29e3b63",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"device_gpu = torch.device(\"cuda:0\")\n",
|
||||
"model = GRU()\n",
|
||||
"crf = CRF(9)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "9c321d58",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"mask = torch.ByteTensor([1, 1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "05482a7c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"criterion = torch.nn.CrossEntropyLoss()\n",
|
||||
"params = list(model.parameters()) + list(crf.parameters())\n",
|
||||
"optimizer = torch.optim.Adam(params)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "21a5282e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"for i in range(2):\n",
|
||||
" crf.train()\n",
|
||||
" model.train()\n",
|
||||
" for i in tqdm(range(len(labels_tokens))):\n",
|
||||
" batch_tokens = train_tokens[i].unsqueeze(0)\n",
|
||||
" tags = labels_tokens[i].unsqueeze(1)\n",
|
||||
"\n",
|
||||
" predicted_tags = model(batch_tokens).squeeze(0).unsqueeze(1)\n",
|
||||
"\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = -crf(predicted_tags, tags)\n",
|
||||
"\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "cec14c35",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"!pip3 install pytorch-crf"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "1ee634f7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import torch\n",
|
||||
"from torchcrf import CRF"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
418
Program.ipynb
418
Program.ipynb
@ -1,418 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "e574fca4",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"C:\\Users\\grzyb\\anaconda3\\lib\\site-packages\\gensim\\similarities\\__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n",
|
||||
" warnings.warn(msg)\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"import pandas as pd\n",
|
||||
"import numpy as np\n",
|
||||
"import csv\n",
|
||||
"import os.path\n",
|
||||
"import shutil\n",
|
||||
"import torch\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"from itertools import islice\n",
|
||||
"from sklearn.model_selection import train_test_split\n",
|
||||
"from torchtext.vocab import Vocab\n",
|
||||
"from collections import Counter\n",
|
||||
"from nltk.tokenize import word_tokenize\n",
|
||||
"import gensim.downloader as api\n",
|
||||
"from gensim.models.word2vec import Word2Vec"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "fbe3a657",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class NERModel(torch.nn.Module):\n",
|
||||
"\n",
|
||||
" def __init__(self,):\n",
|
||||
" super(NERModel, self).__init__()\n",
|
||||
" self.emb = torch.nn.Embedding(23628,200)\n",
|
||||
" self.fc1 = torch.nn.Linear(600,9)\n",
|
||||
" \n",
|
||||
"\n",
|
||||
" def forward(self, x):\n",
|
||||
" x = self.emb(x)\n",
|
||||
" x = x.reshape(600) \n",
|
||||
" x = self.fc1(x)\n",
|
||||
" return x"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "3497a580",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def process_output(lines):\n",
|
||||
" result = []\n",
|
||||
" for line in lines:\n",
|
||||
" last_label = None\n",
|
||||
" new_line = []\n",
|
||||
" for label in line:\n",
|
||||
" if(label != \"O\" and label[0:2] == \"I-\"):\n",
|
||||
" if last_label == None or last_label == \"O\":\n",
|
||||
" label = label.replace('I-', 'B-')\n",
|
||||
" else:\n",
|
||||
" label = \"I-\" + last_label[2:]\n",
|
||||
" last_label = label\n",
|
||||
" new_line.append(label)\n",
|
||||
" x = (\" \".join(new_line))\n",
|
||||
" result.append(\" \".join(new_line))\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "3e78d902",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def build_vocab(dataset):\n",
|
||||
" counter = Counter()\n",
|
||||
" for document in dataset:\n",
|
||||
" counter.update(document)\n",
|
||||
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "ec8537cf",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def data_process(dt):\n",
|
||||
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "847c958a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def labels_process(dt):\n",
|
||||
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "66bee163",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def predict(input_tokens, labels):\n",
|
||||
"\n",
|
||||
" results = []\n",
|
||||
" \n",
|
||||
" for i in range(len(input_tokens)):\n",
|
||||
" line_results = []\n",
|
||||
" for j in range(1, len(input_tokens[i]) - 1):\n",
|
||||
" x = input_tokens[i][j-1: j+2].to(device_gpu)\n",
|
||||
" predicted = ner_model(x.long())\n",
|
||||
" result = torch.argmax(predicted)\n",
|
||||
" label = labels[result]\n",
|
||||
" line_results.append(label)\n",
|
||||
" results.append(line_results)\n",
|
||||
"\n",
|
||||
" return results"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "39046f3f",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = pd.read_csv('train/train.tsv.xz', sep='\\t', names=['a', 'b'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 9,
|
||||
"id": "9b40a8b6",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"labels = ['O','B-LOC', 'I-LOC','B-MISC', 'I-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'I-PER'] \n",
|
||||
"train[\"a\"]=train[\"a\"].apply(lambda x: [labels.index(y) for y in x.split()])\n",
|
||||
"train[\"b\"]=train[\"b\"].apply(lambda x: x.split())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 10,
|
||||
"id": "02a12cbd",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vocab = build_vocab(train['b'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 11,
|
||||
"id": "8cc6d19d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
" tensors = []\n",
|
||||
"\n",
|
||||
" for sent in train[\"b\"]:\n",
|
||||
" sent_tensor = torch.tensor(())\n",
|
||||
" for word in sent:\n",
|
||||
" temp = torch.tensor([word[0].isupper(), word[0].isdigit()])\n",
|
||||
" sent_tensor = torch.cat((sent_tensor, temp))\n",
|
||||
"\n",
|
||||
" tensors.append(sent_tensor)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "690085f6",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"data": {
|
||||
"text/plain": [
|
||||
"'NVIDIA GeForce RTX 2060'"
|
||||
]
|
||||
},
|
||||
"execution_count": 12,
|
||||
"metadata": {},
|
||||
"output_type": "execute_result"
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"torch.cuda.get_device_name(0)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "64b2d751",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"device_gpu = torch.device(\"cuda:0\")\n",
|
||||
"ner_model = NERModel().to(device_gpu)\n",
|
||||
"criterion = torch.nn.CrossEntropyLoss()\n",
|
||||
"optimizer = torch.optim.Adam(ner_model.parameters())"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "094d7e69",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_labels = labels_process(train['a'])\n",
|
||||
"train_tokens_ids = data_process(train['b'])\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
"id": "17291b41",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train_tensors = [torch.cat((token, tensors[i])) for i, token in enumerate(train_tokens_ids)]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "045b7186",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"epoch: 0\n",
|
||||
"f1: 0.6310260230881535\n",
|
||||
"acc: 0.9099004714510215\n",
|
||||
"epoch: 1\n",
|
||||
"f1: 0.7977381727751791\n",
|
||||
"acc: 0.9539025667888947\n",
|
||||
"epoch: 2\n",
|
||||
"f1: 0.8635445687583837\n",
|
||||
"acc: 0.9699162783858546\n",
|
||||
"epoch: 3\n",
|
||||
"f1: 0.9047002002591589\n",
|
||||
"acc: 0.9794417946385082\n",
|
||||
"epoch: 4\n",
|
||||
"f1: 0.9300697243387956\n",
|
||||
"acc: 0.9852774944170274\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for epoch in range(5):\n",
|
||||
" acc_score = 0\n",
|
||||
" prec_score = 0\n",
|
||||
" selected_items = 0\n",
|
||||
" recall_score = 0\n",
|
||||
" relevant_items = 0\n",
|
||||
" items_total = 0\n",
|
||||
" ner_model.train()\n",
|
||||
" for i in range(len(train_labels)):\n",
|
||||
" for j in range(1, len(train_labels[i]) - 1):\n",
|
||||
" X = train_tensors[i][j - 1: j + 2].to(device_gpu)\n",
|
||||
"\n",
|
||||
" Y = train_labels[i][j: j + 1].to(device_gpu)\n",
|
||||
"\n",
|
||||
" Y_predictions = ner_model(X.long())\n",
|
||||
"\n",
|
||||
" acc_score += int(torch.argmax(Y_predictions) == Y)\n",
|
||||
" if torch.argmax(Y_predictions) != 0:\n",
|
||||
" selected_items += 1\n",
|
||||
" if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n",
|
||||
" prec_score += 1\n",
|
||||
" if Y.item() != 0:\n",
|
||||
" relevant_items += 1\n",
|
||||
" if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n",
|
||||
" recall_score += 1\n",
|
||||
"\n",
|
||||
" items_total += 1\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = criterion(Y_predictions.unsqueeze(0), Y)\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()\n",
|
||||
"\n",
|
||||
" precision = prec_score / selected_items\n",
|
||||
" recall = recall_score / relevant_items\n",
|
||||
" f1_score = (2 * precision * recall) / (precision + recall)\n",
|
||||
" print(f'epoch: {epoch}')\n",
|
||||
" print(f'f1: {f1_score}')\n",
|
||||
" print(f'acc: {acc_score / items_total}')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 17,
|
||||
"id": "f75aa5e2",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def create_tensors_list(data):\n",
|
||||
" tensors = []\n",
|
||||
"\n",
|
||||
" for sent in data[\"a\"]:\n",
|
||||
" sent_tensor = torch.tensor(())\n",
|
||||
" for word in sent:\n",
|
||||
" temp = torch.tensor([word[0].isupper(), word[0].isdigit()])\n",
|
||||
" sent_tensor = torch.cat((sent_tensor, temp))\n",
|
||||
"\n",
|
||||
" tensors.append(sent_tensor)\n",
|
||||
"\n",
|
||||
" return tensors"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
"id": "49215802",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"dev = pd.read_csv('dev-0/in.tsv', sep='\\t', names=['a'])\n",
|
||||
"dev[\"a\"] = dev[\"a\"].apply(lambda x: x.split())\n",
|
||||
"\n",
|
||||
"dev_tokens_ids = data_process(dev[\"a\"])\n",
|
||||
"\n",
|
||||
"dev_extra_tensors = create_tensors_list(dev)\n",
|
||||
"\n",
|
||||
"dev_tensors = [torch.cat((token, dev_extra_tensors[i])) for i, token in enumerate(dev_tokens_ids)]\n",
|
||||
"\n",
|
||||
"results = predict(dev_tensors, labels)\n",
|
||||
"results_processed = process_output(results)\n",
|
||||
"\n",
|
||||
"with open(\"dev-0/out.tsv\", \"w\") as f:\n",
|
||||
" for line in results_processed:\n",
|
||||
" f.write(line + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
"id": "8c5b007e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"test = pd.read_csv('test-A/in.tsv', sep='\\t', names=['a'])\n",
|
||||
"test[\"a\"] = test[\"a\"].apply(lambda x: x.split())\n",
|
||||
"\n",
|
||||
"test_tokens_ids = data_process(test[\"a\"])\n",
|
||||
"\n",
|
||||
"test_extra_tensors = create_tensors_list(test)\n",
|
||||
"\n",
|
||||
"test_tensors = [torch.cat((token, test_extra_tensors[i])) for i, token in enumerate(test_tokens_ids)]\n",
|
||||
"\n",
|
||||
"results = predict(test_tensors, labels)\n",
|
||||
"results_processed = process_output(results)\n",
|
||||
"\n",
|
||||
"with open(\"test-A/out.tsv\", \"w\") as f:\n",
|
||||
" for line in results_processed:\n",
|
||||
" f.write(line + \"\\n\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
"id": "000dd425",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model_path = \"seq_labeling.model\"\n",
|
||||
"torch.save(ner_model.state_dict(), model_path)"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
215
dev-0/out.tsv
215
dev-0/out.tsv
File diff suppressed because one or more lines are too long
307
gru.ipynb
307
gru.ipynb
@ -1,307 +0,0 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "bce0cfa7",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"from os import sep\n",
|
||||
"from nltk import word_tokenize\n",
|
||||
"import pandas as pd\n",
|
||||
"import torch\n",
|
||||
"from torchcrf import CRF\n",
|
||||
"import gensim\n",
|
||||
"from torch._C import device\n",
|
||||
"from tqdm import tqdm\n",
|
||||
"from torchtext.vocab import Vocab\n",
|
||||
"from collections import Counter, OrderedDict\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"from torch.utils.data import DataLoader\n",
|
||||
"import numpy as np\n",
|
||||
"from sklearn.metrics import accuracy_score, f1_score, classification_report\n",
|
||||
"import csv\n",
|
||||
"import pickle\n",
|
||||
"\n",
|
||||
"import lzma\n",
|
||||
"import re\n",
|
||||
"import itertools"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 2,
|
||||
"id": "6695751c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def build_vocab(dataset):\n",
|
||||
" counter = Counter()\n",
|
||||
" for document in dataset:\n",
|
||||
" counter.update(document)\n",
|
||||
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
"id": "d247e4fe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def data_process(dt, vocab):\n",
|
||||
" return [torch.tensor([vocab[token] for token in document], dtype=torch.long) for document in dt]\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def get_scores(y_true, y_pred):\n",
|
||||
" acc_score = 0\n",
|
||||
" tp = 0\n",
|
||||
" fp = 0\n",
|
||||
" selected_items = 0\n",
|
||||
" relevant_items = 0\n",
|
||||
" for p, t in zip(y_pred, y_true):\n",
|
||||
" if p == t:\n",
|
||||
" acc_score += 1\n",
|
||||
" if p > 0 and p == t:\n",
|
||||
" tp += 1\n",
|
||||
" if p > 0:\n",
|
||||
" selected_items += 1\n",
|
||||
" if t > 0:\n",
|
||||
" relevant_items += 1\n",
|
||||
"\n",
|
||||
" if selected_items == 0:\n",
|
||||
" precision = 1.0\n",
|
||||
" else:\n",
|
||||
" precision = tp / selected_items\n",
|
||||
"\n",
|
||||
" if relevant_items == 0:\n",
|
||||
" recall = 1.0\n",
|
||||
" else:\n",
|
||||
" recall = tp / relevant_items\n",
|
||||
"\n",
|
||||
" if precision + recall == 0.0:\n",
|
||||
" f1 = 0.0\n",
|
||||
" else:\n",
|
||||
" f1 = 2 * precision * recall / (precision + recall)\n",
|
||||
"\n",
|
||||
" return precision, recall, f1"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
"id": "b6061642",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def process_output(lines):\n",
|
||||
" result = []\n",
|
||||
" for line in lines:\n",
|
||||
" last_label = None\n",
|
||||
" new_line = []\n",
|
||||
" for label in line:\n",
|
||||
" if(label != \"O\" and label[0:2] == \"I-\"):\n",
|
||||
" if last_label == None or last_label == \"O\":\n",
|
||||
" label = label.replace('I-', 'B-')\n",
|
||||
" else:\n",
|
||||
" label = \"I-\" + last_label[2:]\n",
|
||||
" last_label = label\n",
|
||||
" new_line.append(label)\n",
|
||||
" x = (\" \".join(new_line))\n",
|
||||
" result.append(\" \".join(new_line))\n",
|
||||
" return result"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
"id": "3d7c4dd3",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"class GRU(torch.nn.Module):\n",
|
||||
" def __init__(self):\n",
|
||||
" super(GRU, self).__init__()\n",
|
||||
" self.emb = torch.nn.Embedding(len(vocab_x.itos),100)\n",
|
||||
" self.dropout = torch.nn.Dropout(0.2)\n",
|
||||
" self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)\n",
|
||||
" self.fc1 = torch.nn.Linear(2* 256 , 9)\n",
|
||||
" \n",
|
||||
" def forward(self, x):\n",
|
||||
" emb = torch.relu(self.emb(x))\n",
|
||||
" emb = self.dropout(emb) \n",
|
||||
" gru_output, h_n = self.rec(emb) \n",
|
||||
" out_weights = self.fc1(gru_output)\n",
|
||||
" return out_weights"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
"id": "cd5e419d",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"def dev_eval(model, crf, dev_tokens, dev_labels_tokens, vocab):\n",
|
||||
" Y_true = []\n",
|
||||
" Y_pred = []\n",
|
||||
" model.eval()\n",
|
||||
" crf.eval()\n",
|
||||
" for i in tqdm(range(len(dev_labels_tokens))):\n",
|
||||
" batch_tokens = dev_tokens[i].unsqueeze(0)\n",
|
||||
" tags = list(dev_labels_tokens[i].numpy())\n",
|
||||
" Y_true += tags\n",
|
||||
"\n",
|
||||
" Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n",
|
||||
" Y_batch_pred = torch.argmax(Y_batch_pred_weights, 1)\n",
|
||||
" Y_pred += [crf.decode(Y_batch_pred)[0]]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
"id": "c808bbd5",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"train = pd.read_csv('train/train.tsv', sep='\\t',\n",
|
||||
" names=['labels', 'document'])\n",
|
||||
"\n",
|
||||
"Y_train = [y.split(sep=\" \") for y in train['labels'].values]\n",
|
||||
"X_train = [x.split(sep=\" \") for x in train['document'].values]\n",
|
||||
"\n",
|
||||
"dev = pd.read_csv('dev-0/in.tsv', sep='\\t', names=['document'])\n",
|
||||
"exp = pd.read_csv('dev-0/expected.tsv', sep='\\t', names=['labels'])\n",
|
||||
"X_dev = [x.split(sep=\" \") for x in dev['document'].values]\n",
|
||||
"Y_dev = [y.split(sep=\" \") for y in exp['labels'].values]\n",
|
||||
"\n",
|
||||
"test = pd.read_csv('test-A/in.tsv', sep='\\t', names=['document'])\n",
|
||||
"X_test = test['document'].values"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "79485c9a",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"vocab_x = build_vocab(X_train)\n",
|
||||
"vocab_y = build_vocab(Y_train)\n",
|
||||
"train_tokens = data_process(X_train, vocab_x)\n",
|
||||
"labels_tokens = data_process(Y_train, vocab_y)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "f29e3b63",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"model = GRU()\n",
|
||||
"crf = CRF(9)\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "05482a7c",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"criterion = torch.nn.CrossEntropyLoss()\n",
|
||||
"params = list(model.parameters()) + list(crf.parameters())\n",
|
||||
"optimizer = torch.optim.Adam(params)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "21a5282e",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
" 0%| | 0/945 [00:00<?, ?it/s]\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"ename": "ValueError",
|
||||
"evalue": "expected last dimension of emissions is 10, got 9",
|
||||
"output_type": "error",
|
||||
"traceback": [
|
||||
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
||||
"\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
|
||||
"\u001b[0;32m<ipython-input-14-6dc1a1c63d46>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0moptimizer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzero_grad\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 11\u001b[0;31m \u001b[0mloss\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m-\u001b[0m\u001b[0mcrf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpredicted_tags\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtags\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 12\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 13\u001b[0m \u001b[0mloss\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbackward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/torch/nn/modules/module.py\u001b[0m in \u001b[0;36m_call_impl\u001b[0;34m(self, *input, **kwargs)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_slow_forward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mforward\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0minput\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m for hook in itertools.chain(\n\u001b[1;32m 891\u001b[0m \u001b[0m_global_forward_hooks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/torchcrf/__init__.py\u001b[0m in \u001b[0;36mforward\u001b[0;34m(self, emissions, tags, mask, reduction)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0mreduction\u001b[0m \u001b[0;32mis\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0mnone\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;31m \u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;31m`\u001b[0m\u001b[0;31m`\u001b[0m \u001b[0motherwise\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \"\"\"\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_validate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0memissions\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mtags\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mtags\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmask\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mmask\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mreduction\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0;34m'none'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'sum'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'mean'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'token_mean'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'invalid reduction: {reduction}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
|
||||
"\u001b[0;32m~/anaconda3/lib/python3.8/site-packages/torchcrf/__init__.py\u001b[0m in \u001b[0;36m_validate\u001b[0;34m(self, emissions, tags, mask)\u001b[0m\n\u001b[1;32m 147\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'emissions must have dimension of 3, got {emissions.dim()}'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 148\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0memissions\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m!=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnum_tags\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 149\u001b[0;31m raise ValueError(\n\u001b[0m\u001b[1;32m 150\u001b[0m \u001b[0;34mf'expected last dimension of emissions is {self.num_tags}, '\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 151\u001b[0m f'got {emissions.size(2)}')\n",
|
||||
"\u001b[0;31mValueError\u001b[0m: expected last dimension of emissions is 10, got 9"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"for i in range(2):\n",
|
||||
" crf.train()\n",
|
||||
" model.train()\n",
|
||||
" for i in tqdm(range(len(labels_tokens))):\n",
|
||||
" batch_tokens = train_tokens[i].unsqueeze(0)\n",
|
||||
" tags = labels_tokens[i].unsqueeze(1)\n",
|
||||
"\n",
|
||||
" predicted_tags = model(batch_tokens).squeeze(0).unsqueeze(1)\n",
|
||||
"\n",
|
||||
" optimizer.zero_grad()\n",
|
||||
" loss = -crf(predicted_tags, tags)\n",
|
||||
"\n",
|
||||
" loss.backward()\n",
|
||||
" optimizer.step()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "366ab1fe",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"Y_pred = []\n",
|
||||
"model.eval()\n",
|
||||
"crf.eval()\n",
|
||||
"for i in tqdm(range(len(test_tokens))):\n",
|
||||
" batch_tokens = test_tokens[i].unsqueeze(0)\n",
|
||||
"\n",
|
||||
" Y_batch_pred = model(batch_tokens).squeeze(0).unsqueeze(1)\n",
|
||||
" Y_pred += [crf.decode(Y_batch_pred)[0]]\n",
|
||||
"\n",
|
||||
"Y_pred_translate = translate(Y_pred, vocab)\n",
|
||||
"return Y_pred_translate"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Binary file not shown.
189
solution.py
189
solution.py
@ -1,189 +0,0 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import csv
|
||||
import os.path
|
||||
import shutil
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from itertools import islice
|
||||
from sklearn.model_selection import train_test_split
|
||||
from torchtext.vocab import Vocab
|
||||
from collections import Counter
|
||||
from nltk.tokenize import word_tokenize
|
||||
import gensim.downloader as api
|
||||
from gensim.models.word2vec import Word2Vec
|
||||
|
||||
class NERModel(torch.nn.Module):
|
||||
|
||||
def __init__(self,):
|
||||
super(NERModel, self).__init__()
|
||||
self.emb = torch.nn.Embedding(23628,200)
|
||||
self.fc1 = torch.nn.Linear(600,9)
|
||||
|
||||
|
||||
def forward(self, x):
|
||||
x = self.emb(x)
|
||||
x = x.reshape(600)
|
||||
x = self.fc1(x)
|
||||
return x
|
||||
|
||||
def process_output(lines):
|
||||
result = []
|
||||
for line in lines:
|
||||
last_label = None
|
||||
new_line = []
|
||||
for label in line:
|
||||
if(label != "O" and label[0:2] == "I-"):
|
||||
if last_label == None or last_label == "O":
|
||||
label = label.replace('I-', 'B-')
|
||||
else:
|
||||
label = "I-" + last_label[2:]
|
||||
last_label = label
|
||||
new_line.append(label)
|
||||
x = (" ".join(new_line))
|
||||
result.append(" ".join(new_line))
|
||||
return result
|
||||
|
||||
def build_vocab(dataset):
|
||||
counter = Counter()
|
||||
for document in dataset:
|
||||
counter.update(document)
|
||||
return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])
|
||||
|
||||
def data_process(dt):
|
||||
return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]
|
||||
|
||||
def labels_process(dt):
|
||||
return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]
|
||||
|
||||
def predict(input_tokens, labels):
|
||||
|
||||
results = []
|
||||
|
||||
for i in range(len(input_tokens)):
|
||||
line_results = []
|
||||
for j in range(1, len(input_tokens[i]) - 1):
|
||||
x = input_tokens[i][j-1: j+2].to(device_gpu)
|
||||
predicted = ner_model(x.long())
|
||||
result = torch.argmax(predicted)
|
||||
label = labels[result]
|
||||
line_results.append(label)
|
||||
results.append(line_results)
|
||||
|
||||
return results
|
||||
|
||||
train = pd.read_csv('train/train.tsv.xz', sep='\t', names=['a', 'b'])
|
||||
|
||||
labels = ['O','B-LOC', 'I-LOC','B-MISC', 'I-MISC', 'B-ORG', 'I-ORG', 'B-PER', 'I-PER']
|
||||
train["a"]=train["a"].apply(lambda x: [labels.index(y) for y in x.split()])
|
||||
train["b"]=train["b"].apply(lambda x: x.split())
|
||||
|
||||
vocab = build_vocab(train['b'])
|
||||
|
||||
tensors = []
|
||||
|
||||
for sent in train["b"]:
|
||||
sent_tensor = torch.tensor(())
|
||||
for word in sent:
|
||||
temp = torch.tensor([word[0].isupper(), word[0].isdigit()])
|
||||
sent_tensor = torch.cat((sent_tensor, temp))
|
||||
|
||||
tensors.append(sent_tensor)
|
||||
|
||||
device_gpu = torch.device("cuda:0")
|
||||
ner_model = NERModel().to(device_gpu)
|
||||
criterion = torch.nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(ner_model.parameters())
|
||||
|
||||
train_labels = labels_process(train['a'])
|
||||
train_tokens_ids = data_process(train['b'])
|
||||
|
||||
train_tensors = [torch.cat((token, tensors[i])) for i, token in enumerate(train_tokens_ids)]
|
||||
|
||||
for epoch in range(5):
|
||||
acc_score = 0
|
||||
prec_score = 0
|
||||
selected_items = 0
|
||||
recall_score = 0
|
||||
relevant_items = 0
|
||||
items_total = 0
|
||||
ner_model.train()
|
||||
for i in range(len(train_labels)):
|
||||
for j in range(1, len(train_labels[i]) - 1):
|
||||
X = train_tensors[i][j - 1: j + 2].to(device_gpu)
|
||||
|
||||
Y = train_labels[i][j: j + 1].to(device_gpu)
|
||||
|
||||
Y_predictions = ner_model(X.long())
|
||||
|
||||
acc_score += int(torch.argmax(Y_predictions) == Y)
|
||||
if torch.argmax(Y_predictions) != 0:
|
||||
selected_items += 1
|
||||
if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():
|
||||
prec_score += 1
|
||||
if Y.item() != 0:
|
||||
relevant_items += 1
|
||||
if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():
|
||||
recall_score += 1
|
||||
|
||||
items_total += 1
|
||||
optimizer.zero_grad()
|
||||
loss = criterion(Y_predictions.unsqueeze(0), Y)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
precision = prec_score / selected_items
|
||||
recall = recall_score / relevant_items
|
||||
f1_score = (2 * precision * recall) / (precision + recall)
|
||||
print(f'epoch: {epoch}')
|
||||
print(f'f1: {f1_score}')
|
||||
print(f'acc: {acc_score / items_total}')
|
||||
|
||||
def create_tensors_list(data):
|
||||
tensors = []
|
||||
|
||||
for sent in data["a"]:
|
||||
sent_tensor = torch.tensor(())
|
||||
for word in sent:
|
||||
temp = torch.tensor([word[0].isupper(), word[0].isdigit()])
|
||||
sent_tensor = torch.cat((sent_tensor, temp))
|
||||
|
||||
tensors.append(sent_tensor)
|
||||
|
||||
return tensors
|
||||
|
||||
dev = pd.read_csv('dev-0/in.tsv', sep='\t', names=['a'])
|
||||
dev["a"] = dev["a"].apply(lambda x: x.split())
|
||||
|
||||
dev_tokens_ids = data_process(dev["a"])
|
||||
|
||||
dev_extra_tensors = create_tensors_list(dev)
|
||||
|
||||
dev_tensors = [torch.cat((token, dev_extra_tensors[i])) for i, token in enumerate(dev_tokens_ids)]
|
||||
|
||||
results = predict(dev_tensors, labels)
|
||||
results_processed = process_output(results)
|
||||
|
||||
with open("dev-0/out.tsv", "w") as f:
|
||||
for line in results_processed:
|
||||
f.write(line + "\n")
|
||||
|
||||
test = pd.read_csv('test-A/in.tsv', sep='\t', names=['a'])
|
||||
test["a"] = test["a"].apply(lambda x: x.split())
|
||||
|
||||
test_tokens_ids = data_process(test["a"])
|
||||
|
||||
test_extra_tensors = create_tensors_list(test)
|
||||
|
||||
test_tensors = [torch.cat((token, test_extra_tensors[i])) for i, token in enumerate(test_tokens_ids)]
|
||||
|
||||
results = predict(test_tensors, labels)
|
||||
results_processed = process_output(results)
|
||||
|
||||
with open("test-A/out.tsv", "w") as f:
|
||||
for line in results_processed:
|
||||
f.write(line + "\n")
|
||||
|
||||
model_path = "seq_labeling.model"
|
||||
torch.save(ner_model.state_dict(), model_path)
|
||||
|
230
test-A/out.tsv
230
test-A/out.tsv
File diff suppressed because one or more lines are too long
945
train/train.tsv
945
train/train.tsv
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user