ium_434704/training.py

44 lines
1.4 KiB
Python
Raw Normal View History

2021-05-13 22:20:25 +02:00
import pandas as pd
import numpy as np
import tensorflow as tf
import os.path
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental import preprocessing
pd.set_option("display.max_columns", None)
2021-05-14 00:20:04 +02:00
cols = ['0','ID','Title','Year','Age','IMDb','Rotten Tomatoes','Netflix','Hulu','Prime Video','Disney+','Type','Directors','Genres','Country','Language','Runtime']
2021-05-13 22:20:25 +02:00
# Wczytanie danych
2021-05-14 00:20:04 +02:00
train_data = pd.read_csv("./MoviesOnStreamingPlatforms_updated.train", header=None, usecols=cols)
2021-05-13 22:20:25 +02:00
# Stworzenie modelu
columns_to_use = ['Year', 'Runtime', 'Netflix']
train_X = tf.convert_to_tensor(train_data[columns_to_use])
train_Y = tf.convert_to_tensor(train_data[["IMDb"]])
test_X = tf.convert_to_tensor(test_data[columns_to_use])
test_Y = tf.convert_to_tensor(test_data[["IMDb"]])
normalizer = preprocessing.Normalization(input_shape=[3,])
normalizer.adapt(train_X)
if os.path.isdir('linear_regression'):
model = keras.models.load_model('linear_regression')
else:
model = keras.Sequential([
keras.Input(shape=(len(columns_to_use),)),
normalizer,
layers.Dense(30, activation='relu'),
layers.Dense(10, activation='relu'),
layers.Dense(25, activation='relu'),
layers.Dense(1)
])
model.compile(loss='mean_absolute_error',
optimizer=tf.keras.optimizers.Adam(0.001))
model.fit(train_X, train_Y, verbose=0, epochs=100)
model.save('linear_regression')