Tried really hard to make recursion work
This commit is contained in:
parent
5790a923f0
commit
265668fa47
@ -53,7 +53,7 @@ class GC(Cell):
|
||||
self.moves.extend(result)
|
||||
self.moves.reverse()
|
||||
|
||||
def find_houses_BestFS(self,enviromnent, house_count):
|
||||
"""def find_houses_BestFS(self,enviromnent, house_count):
|
||||
x = self.x
|
||||
y = self.y
|
||||
result = []
|
||||
@ -73,14 +73,40 @@ class GC(Cell):
|
||||
a += 1
|
||||
|
||||
available_movement = check_moves(enviromnent, x, y)
|
||||
result, [x, y] = BestFS(enviromnent, [x, y], houses_list)
|
||||
result, [x, y] = BestFS(enviromnent, [[x, y]], houses_list)
|
||||
self.moves.extend(result)
|
||||
available_movement = check_moves(enviromnent, x, y)
|
||||
result, [x, y] = BestFS(enviromnent, [x, y], dump_list)
|
||||
result, [x, y] = BestFS(enviromnent, [[x, y]], dump_list)
|
||||
print("IM ALIVEEEEEEEEEEEEEEEE")
|
||||
self.moves.extend(result[1:])
|
||||
self.moves.reverse()
|
||||
self.moves.reverse()"""
|
||||
|
||||
def find_houses_BestFS(self, environment):
|
||||
x = self.x
|
||||
y = self.y
|
||||
result = [[x,y]]
|
||||
|
||||
houses_list = []
|
||||
dump_list = []
|
||||
a = 0
|
||||
for row in environment:
|
||||
b = 0
|
||||
for col in row:
|
||||
print(col)
|
||||
if (type(col) is House):
|
||||
houses_list.append([col,[a,b]])
|
||||
if (type(col) is Dump):
|
||||
dump_list.append([col,[a,b]])
|
||||
b += 1
|
||||
a += 1
|
||||
|
||||
x, y = self.x, self.y
|
||||
|
||||
for i in range(len(houses_list)):
|
||||
available_movement = check_moves(environment, x, y)
|
||||
[x,y],result,houses_list = BestFS(environment, available_movement, [[x,y]], houses_list)
|
||||
self.moves.extend(result[1:])
|
||||
self.moves.reverse()
|
||||
|
||||
def make_actions_from_list(self,environment):
|
||||
now = pygame.time.get_ticks()
|
||||
|
@ -14,113 +14,64 @@ def CalculateDistance(gc, object_list):
|
||||
min_distance_goal = [h[1], distance]
|
||||
return min_distance_goal
|
||||
|
||||
def BestFS(grid, gc_moveset, object_list):
|
||||
def BestFS(grid, available_movement, gc_moveset, object_list, depth = 0):
|
||||
|
||||
x, y = gc_moveset[-1][0], gc_moveset[-1][1]
|
||||
|
||||
if(len(object_list) == 0):
|
||||
return result
|
||||
#if depth exceeded, return
|
||||
if(depth > 30 or len(available_movement) == 0):
|
||||
return
|
||||
|
||||
result = [gc_moveset]
|
||||
print(gc_moveset)
|
||||
x, y = gc_moveset[0], gc_moveset[1]
|
||||
available_movement = check_moves(grid, x, y)
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
decision_stack = []
|
||||
if(min_distance_goal[1] == 1):
|
||||
gc_moveset.append("pick_garbage")
|
||||
cell = grid[min_distance_goal[0][0]][min_distance_goal[0][1]]
|
||||
print("***"+str([cell,min_distance_goal[0]])+"***")
|
||||
object_list.remove([cell,min_distance_goal[0]])
|
||||
return([x, y], gc_moveset, object_list)
|
||||
|
||||
constraint = 100
|
||||
while(len(object_list) > 0 and constraint > 0):
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
discouraged_directions = []
|
||||
|
||||
print("================")
|
||||
print("iteracja: "+str(100-constraint))
|
||||
print("GC: "+str([x,y]))
|
||||
print(object_list)
|
||||
if(min_distance_goal[0][0] > x):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] < x):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] > y):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] < y):
|
||||
preffered_directions.append("up")
|
||||
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
if(len(preffered_directions) == 1):
|
||||
discouraged_directions.append(movement(grid, x, y)[1][preffered_directions[0]])
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
discouraged_directions = []
|
||||
if(min_distance_goal[1] == 1):
|
||||
result.append("pick_garbage")
|
||||
decision_stack = []
|
||||
cell = grid[min_distance_goal[0][0]][min_distance_goal[0][1]]
|
||||
print("***"+str([cell,min_distance_goal[0]])+"***")
|
||||
object_list.remove([cell,min_distance_goal[0]])
|
||||
if(len(object_list)==0):
|
||||
break
|
||||
available_movement = check_moves(grid, x, y)
|
||||
"""print("Preferred: "+str(preffered_directions))
|
||||
print("Discouraged: "+str(discouraged_directions))
|
||||
print("Available: "+str(available_movement))"""
|
||||
|
||||
#sort available moves according to preferences
|
||||
sorted = [o for o in preffered_directions if o in available_movement]
|
||||
for o in sorted:
|
||||
available_movement.remove(o)
|
||||
sorted.extend([o for o in available_movement if o not in discouraged_directions])
|
||||
for o in sorted:
|
||||
if(o in available_movement):
|
||||
available_movement.remove(o)
|
||||
sorted.extend(available_movement)
|
||||
available_movement = sorted.copy()
|
||||
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
#print("After sorting: "+str(available_movement))
|
||||
|
||||
print(min_distance_goal[0])
|
||||
|
||||
|
||||
if(min_distance_goal[0][0] > x):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] < x):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] > y):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] < y):
|
||||
preffered_directions.append("up")
|
||||
|
||||
if(len(preffered_directions) == 1):
|
||||
discouraged_directions.append(movement(grid, x, y)[1][preffered_directions[0]])
|
||||
|
||||
print("Preferred: "+str(preffered_directions))
|
||||
print("Discouraged: "+str(discouraged_directions))
|
||||
print("Available: "+str(available_movement))
|
||||
|
||||
possible_routes = len([i for i in available_movement if i in preffered_directions ])
|
||||
print("Preferred to available count: "+str(possible_routes))
|
||||
|
||||
#HOTFIX
|
||||
if(possible_routes > 1):
|
||||
if(len(decision_stack) > 0):
|
||||
if(decision_stack[0] == [x,y]):
|
||||
preffered_directions.pop(1)
|
||||
else:
|
||||
decision_stack = [[x,y]]
|
||||
preffered_directions.pop(0)
|
||||
print("Decision stack: "+str(decision_stack))
|
||||
|
||||
""" if(possible_routes > 1):
|
||||
for move in available_movement:
|
||||
if (move in preffered_directions):
|
||||
x_next, y_next = movement(grid, x, y)[0][move]
|
||||
route = BestFS(grid, [x_next,y_next], houses_list, [[x_next, y_next]], check_moves(grid, x_next, y_next, move), "House", depth + 1)
|
||||
print("DIRECTION: "+str(move)+", GIVEN "+str(len(houses_list))+" HOUSES, RECURSION ON DEPTH "+str(depth+1)+" returned "+str(route))
|
||||
if (route == None):
|
||||
break
|
||||
if (route.count("pick_garbage") - 1 == len(houses_list)):
|
||||
print(str(route.count("pick_garbage"))+" / "+str(len(houses_list)))
|
||||
print("ROUTE ADDED")
|
||||
result.extend(route)
|
||||
break
|
||||
break """
|
||||
|
||||
if(len(available_movement) == 0):
|
||||
available_movement = check_moves(grid, x, y)
|
||||
if(len(available_movement)>0):
|
||||
next_move = available_movement[0]
|
||||
for move in available_movement:
|
||||
if (move not in discouraged_directions):
|
||||
next_move = move
|
||||
break
|
||||
for move in preffered_directions:
|
||||
if(move in available_movement):
|
||||
next_move = move
|
||||
break
|
||||
print("Next move: "+str(next_move))
|
||||
x_next, y_next = movement(grid, x, y)[0][next_move]
|
||||
print("Next moving to "+str(x_next)+" "+str(y_next))
|
||||
result.append([x_next,y_next])
|
||||
x, y = x_next, y_next
|
||||
available_movement = check_moves(grid, x, y, next_move)
|
||||
print("------------------------------")
|
||||
|
||||
constraint -= 1
|
||||
|
||||
return result, [x,y]
|
||||
for direction in available_movement:
|
||||
x_next, y_next = movement(grid,x,y)[0][direction]
|
||||
available_movement_next = check_moves(grid, x_next,y_next,direction)
|
||||
gc_moveset_next = gc_moveset.copy()
|
||||
gc_moveset_next.append([x_next,y_next])
|
||||
result = BestFS(grid, available_movement_next, gc_moveset_next, object_list, depth + 1)
|
||||
print(type(result))
|
||||
if result!= None:
|
||||
return result
|
131
Traversal/BestFS_nope.py
Normal file
131
Traversal/BestFS_nope.py
Normal file
@ -0,0 +1,131 @@
|
||||
from utilities import movement,check_moves
|
||||
from DataModels.House import House
|
||||
from DataModels.Container import Container
|
||||
from config import GRID_WIDTH, GRID_HEIGHT
|
||||
from math import sqrt
|
||||
INF = float('Inf')
|
||||
|
||||
|
||||
def CalculateDistance(gc, object_list):
|
||||
min_distance_goal = ['-',INF]
|
||||
for h in object_list:
|
||||
distance = sqrt(pow(h[1][0]-gc[0],2)+pow(h[1][1]-gc[1],2))
|
||||
if(min_distance_goal[1] > distance):
|
||||
min_distance_goal = [h[1], distance]
|
||||
return min_distance_goal
|
||||
|
||||
def BestFS(grid, gc_moveset, object_list):
|
||||
print(gc_moveset)
|
||||
x, y = gc_moveset[-1][0], gc_moveset[-1][1]
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
if(len(object_list) == 0):
|
||||
return gc_moveset
|
||||
|
||||
|
||||
decision_stack = []
|
||||
|
||||
constraint = 100
|
||||
while(len(object_list) > 0 and constraint > 0):
|
||||
|
||||
print("================")
|
||||
print("iteracja: "+str(100-constraint))
|
||||
print("GC: "+str([x,y]))
|
||||
print(object_list)
|
||||
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
#check if can pick garbage
|
||||
if(min_distance_goal[1] == 1):
|
||||
gc_moveset.append("pick_garbage")
|
||||
decision_stack = []
|
||||
#remove object from goals list
|
||||
cell = grid[min_distance_goal[0][0]][min_distance_goal[0][1]]
|
||||
print("***"+str([cell,min_distance_goal[0]])+"***")
|
||||
object_list.remove([cell,min_distance_goal[0]])
|
||||
#if that was the last object, return
|
||||
if(len(object_list)==0):
|
||||
break
|
||||
#look for a new goal
|
||||
available_movement = check_moves(grid, x, y)
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
print(min_distance_goal[0])
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
discouraged_directions = []
|
||||
|
||||
if(min_distance_goal[0][0] > x):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] < x):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] > y):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] < y):
|
||||
preffered_directions.append("up")
|
||||
|
||||
if(len(preffered_directions) == 1):
|
||||
discouraged_directions.append(movement(grid, x, y)[1][preffered_directions[0]])
|
||||
|
||||
print("Preferred: "+str(preffered_directions))
|
||||
print("Discouraged: "+str(discouraged_directions))
|
||||
print("Available: "+str(available_movement))
|
||||
|
||||
#if agent finds more than 1 optimal route
|
||||
possible_routes = len([i for i in available_movement if i in preffered_directions ])
|
||||
print("Preferred to available count: "+str(possible_routes))
|
||||
|
||||
#HOTFIX
|
||||
if(possible_routes > 1):
|
||||
if(len(decision_stack) > 0):
|
||||
if(decision_stack[0] == [x,y]):
|
||||
preffered_directions.pop(1)
|
||||
else:
|
||||
decision_stack = [[x,y]]
|
||||
preffered_directions.pop(0)
|
||||
print("Decision stack: "+str(decision_stack))
|
||||
|
||||
""" if(possible_routes > 1):
|
||||
for move in available_movement:
|
||||
if (move in preffered_directions):
|
||||
x_next, y_next = movement(grid, x, y)[0][move]
|
||||
route = BestFS(grid, [x_next,y_next], houses_list, [[x_next, y_next]], check_moves(grid, x_next, y_next, move), "House", depth + 1)
|
||||
print("DIRECTION: "+str(move)+", GIVEN "+str(len(houses_list))+" HOUSES, RECURSION ON DEPTH "+str(depth+1)+" returned "+str(route))
|
||||
if (route == None):
|
||||
break
|
||||
if (route.count("pick_garbage") - 1 == len(houses_list)):
|
||||
print(str(route.count("pick_garbage"))+" / "+str(len(houses_list)))
|
||||
print("ROUTE ADDED")
|
||||
gc_moveset.extend(route)
|
||||
break
|
||||
break """
|
||||
|
||||
#if got no available moves but still has goals to visit
|
||||
if(len(available_movement) == 0):
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
#selecting next move based on preferences (starting with the worst option)
|
||||
if(len(available_movement)>0):
|
||||
next_move = available_movement[0] #pick any
|
||||
for move in available_movement:
|
||||
if (move not in discouraged_directions): #pick any not discouraged move if possible
|
||||
next_move = move
|
||||
break
|
||||
for move in preffered_directions:
|
||||
if(move in available_movement): #pick any preferred move if possible
|
||||
next_move = move
|
||||
break
|
||||
print("Next move: "+str(next_move))
|
||||
x_next, y_next = movement(grid, x, y)[0][next_move]
|
||||
print("Next moving to "+str(x_next)+" "+str(y_next))
|
||||
gc_moveset.append([x_next,y_next])
|
||||
x, y = x_next, y_next
|
||||
available_movement = check_moves(grid, x, y, next_move)
|
||||
print("------------------------------")
|
||||
|
||||
constraint -= 1
|
||||
|
||||
return gc_moveset, [x,y]
|
6
main.py
6
main.py
@ -101,15 +101,15 @@ while True:
|
||||
elif event.key == pygame.K_0:
|
||||
gc.find_houses(map_objects,house_count,dump_count)
|
||||
elif event.key == pygame.K_9:
|
||||
gc.find_houses_BestFS(map_objects,house_count)
|
||||
gc.find_houses_BestFS(map_objects)
|
||||
|
||||
gc.make_actions_from_list(map_objects)
|
||||
pygame_sprites.update()
|
||||
pygame_sprites.draw(GAME_WINDOW)
|
||||
|
||||
#draw GC moves
|
||||
bg_rect = pygame.Surface((105,30), pygame.SRCALPHA) # per-pixel alpha
|
||||
bg_rect.fill((0,0,0,160)) # notice the alpha value in the color
|
||||
bg_rect = pygame.Surface((105,30), pygame.SRCALPHA)
|
||||
bg_rect.fill((0,0,0,160))
|
||||
GAME_WINDOW.blit(bg_rect, (0, WINDOW_HEIGHT-30))
|
||||
|
||||
font = pygame.font.SysFont("monospace", 15)
|
||||
|
Loading…
Reference in New Issue
Block a user