Added patch to allow app to even start
This commit is contained in:
parent
265668fa47
commit
b7d463f0ec
@ -104,8 +104,10 @@ class GC(Cell):
|
||||
|
||||
for i in range(len(houses_list)):
|
||||
available_movement = check_moves(environment, x, y)
|
||||
[x,y],result,houses_list = BestFS(environment, available_movement, [[x,y]], houses_list)
|
||||
self.moves.extend(result[1:])
|
||||
output = BestFS(environment, available_movement, [[x,y]], houses_list)
|
||||
if(output != None):
|
||||
[x,y],result,houses_list = output[0], output[1], output[2]
|
||||
self.moves.extend(result[1:])
|
||||
self.moves.reverse()
|
||||
|
||||
def make_actions_from_list(self,environment):
|
||||
|
@ -19,12 +19,12 @@ def BestFS(grid, available_movement, gc_moveset, object_list, depth = 0):
|
||||
x, y = gc_moveset[-1][0], gc_moveset[-1][1]
|
||||
|
||||
#if depth exceeded, return
|
||||
if(depth > 30 or len(available_movement) == 0):
|
||||
if(depth > 15 or len(available_movement) == 0):
|
||||
return
|
||||
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], object_list)
|
||||
print(min_distance_goal)
|
||||
print(depth,min_distance_goal)
|
||||
|
||||
if(min_distance_goal[1] == 1):
|
||||
gc_moveset.append("pick_garbage")
|
||||
@ -64,7 +64,7 @@ def BestFS(grid, available_movement, gc_moveset, object_list, depth = 0):
|
||||
sorted.extend(available_movement)
|
||||
available_movement = sorted.copy()
|
||||
|
||||
#print("After sorting: "+str(available_movement))
|
||||
print("After sorting: "+str(available_movement))
|
||||
|
||||
for direction in available_movement:
|
||||
x_next, y_next = movement(grid,x,y)[0][direction]
|
||||
|
@ -1,84 +0,0 @@
|
||||
from utilities import movement,check_moves
|
||||
from DataModels.House import House
|
||||
from DataModels.Container import Container
|
||||
from config import GRID_WIDTH, GRID_HEIGHT
|
||||
from math import sqrt
|
||||
INF = float('Inf')
|
||||
|
||||
|
||||
def CalculateDistance(gc, goal):
|
||||
result = sqrt(pow(goal[0]-gc[0],2)+pow(goal[1]-gc[1],2))
|
||||
return result
|
||||
|
||||
def BestFS(grid, available_movement, gc_moveset, houses_list, mode = "House", depth=0):
|
||||
|
||||
possible_goals = []
|
||||
a = gc_moveset[-1][0]
|
||||
b = gc_moveset[-1][1]
|
||||
possible_goals.append([a+1,b])
|
||||
possible_goals.append([a-1,b])
|
||||
possible_goals.append([a,b+1])
|
||||
possible_goals.append([a,b-1])
|
||||
object_in_area = False
|
||||
for location in possible_goals:
|
||||
if GRID_WIDTH>location[0]>=0 and GRID_HEIGHT>location[1]>=0:
|
||||
cell = grid[location[0]][location[1]]
|
||||
if mode == "House":
|
||||
if(type(cell) == House and cell.container.is_full and cell.unvisited):
|
||||
cell.unvisited = False
|
||||
object_in_area = True
|
||||
print("***"+str([cell,location])+"***")
|
||||
houses_list.remove([cell,location])
|
||||
break
|
||||
elif mode == "Dump":
|
||||
if(type(cell) == Dump and cell.unvisited):
|
||||
cell.unvisited = False
|
||||
object_in_area = True
|
||||
break
|
||||
if(object_in_area):
|
||||
xy = gc_moveset[-1]
|
||||
gc_moveset.append("pick_garbage")
|
||||
return (xy, gc_moveset)
|
||||
|
||||
if len(available_movement) == 0 or depth>30:
|
||||
return
|
||||
|
||||
x,y = gc_moveset[-1]
|
||||
|
||||
print([x,y])
|
||||
print(houses_list)
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = ['-',INF]
|
||||
for h in houses_list:
|
||||
distance = CalculateDistance([a,b],h[1])
|
||||
if(min_distance_goal[1] > distance):
|
||||
min_distance_goal = [h[1], distance]
|
||||
print(min_distance_goal)
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
if(min_distance_goal[0][0] >= a):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] <= a):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] >= b):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] <= b):
|
||||
preffered_directions.append("up")
|
||||
print(preffered_directions)
|
||||
print(available_movement)
|
||||
print("=")
|
||||
output_list = available_movement.copy()
|
||||
output_list = output_list.sort(key=lambda x: preffered_directions.index(x))
|
||||
print(output_list)
|
||||
print("------------------------------")
|
||||
|
||||
|
||||
for direction in available_movement:
|
||||
x_next, y_next = movement(grid,x,y)[0][direction]
|
||||
available_movement_next = check_moves(grid, x_next,y_next,direction)
|
||||
gc_moveset_next = gc_moveset.copy()
|
||||
gc_moveset_next.append([x_next,y_next])
|
||||
result = BestFS(grid, available_movement_next, gc_moveset_next, houses_list, "House", depth+1)
|
||||
if result!= None:
|
||||
return result
|
@ -1,96 +0,0 @@
|
||||
from utilities import movement,check_moves
|
||||
from DataModels.House import House
|
||||
from DataModels.Container import Container
|
||||
from config import GRID_WIDTH, GRID_HEIGHT
|
||||
from math import sqrt
|
||||
INF = float('Inf')
|
||||
|
||||
|
||||
def CalculateDistance(gc, houses_list):
|
||||
min_distance_goal = ['-',INF]
|
||||
for h in houses_list:
|
||||
distance = sqrt(pow(h[1][0]-gc[0],2)+pow(h[1][1]-gc[1],2))
|
||||
if(min_distance_goal[1] > distance):
|
||||
min_distance_goal = [h[1], distance]
|
||||
return min_distance_goal
|
||||
|
||||
def BestFS(grid, gc_moveset, houses_list, result, available_movement, mode = "House"):
|
||||
|
||||
#result = [gc_moveset]
|
||||
|
||||
if(len(houses_list) == 0 and depth > 100):
|
||||
return result
|
||||
|
||||
print(gc_moveset)
|
||||
x, y = gc_moveset[0], gc_moveset[1]
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
constraint = 100
|
||||
while(len(houses_list) > 0 and constraint > 0):
|
||||
|
||||
print("================")
|
||||
print("iteracja: "+str(100-constraint))
|
||||
print("GC: "+str([x,y]))
|
||||
print(houses_list)
|
||||
|
||||
#calculate distance to the nearest object
|
||||
min_distance_goal = CalculateDistance([x,y], houses_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
#set preffered directions based on the closest object
|
||||
preffered_directions = []
|
||||
discouraged_directions = []
|
||||
if(min_distance_goal[1] == 1):
|
||||
result.append("pick_garbage")
|
||||
cell = grid[min_distance_goal[0][0]][min_distance_goal[0][1]]
|
||||
print("***"+str([cell,min_distance_goal[0]])+"***")
|
||||
houses_list.remove([cell,min_distance_goal[0]])
|
||||
if(len(houses_list)==0):
|
||||
break
|
||||
available_movement = check_moves(grid, x, y)
|
||||
|
||||
min_distance_goal = CalculateDistance([x,y], houses_list)
|
||||
print(min_distance_goal)
|
||||
|
||||
print(min_distance_goal[0])
|
||||
|
||||
|
||||
if(min_distance_goal[0][0] > x):
|
||||
preffered_directions.append("right")
|
||||
if(min_distance_goal[0][0] < x):
|
||||
preffered_directions.append("left")
|
||||
if(min_distance_goal[0][1] > y):
|
||||
preffered_directions.append("down")
|
||||
if(min_distance_goal[0][1] < y):
|
||||
preffered_directions.append("up")
|
||||
|
||||
if(len(preffered_directions) == 1):
|
||||
discouraged_directions.append(movement(grid, x, y)[1][preffered_directions[0]])
|
||||
|
||||
print("Preferred: "+str(preffered_directions))
|
||||
print("Discouraged: "+str(discouraged_directions))
|
||||
print("Available: "+str(available_movement))
|
||||
|
||||
if(len(available_movement) == 0):
|
||||
available_movement = check_moves(grid, x, y)
|
||||
if(len(available_movement)>0):
|
||||
next_move = available_movement[0]
|
||||
for move in available_movement:
|
||||
if (move not in discouraged_directions):
|
||||
next_move = move
|
||||
break
|
||||
for move in preffered_directions:
|
||||
if(move in available_movement):
|
||||
next_move = move
|
||||
break
|
||||
print("Next move: "+str(next_move))
|
||||
x_next, y_next = movement(grid, x, y)[0][next_move]
|
||||
print("Next moving to "+str(x_next)+" "+str(y_next))
|
||||
result.append([x_next,y_next])
|
||||
x, y = x_next, y_next
|
||||
available_movement = check_moves(grid, x, y, next_move)
|
||||
print("------------------------------")
|
||||
|
||||
constraint -= 1
|
||||
|
||||
return result
|
Loading…
Reference in New Issue
Block a user