13 KiB
13 KiB
import lzma
# RTead file with lzma
NDAs = []
with lzma.open('train/in.tsv.xz') as f:
for line in f:
NDAs.append(line.decode('utf-8'))
# Read expected information
expected = []
with open('train/expected.tsv') as f:
for line in f:
expected.append(line.replace('\n', '').split(' '))
import re
months = {'01': 'January', '02': 'February', '03': 'March',
'04': 'April', '05': 'May', '06': 'June',
'07': 'July', '08': 'August', '09': 'September',
'10': 'October', '11': 'November', '12': 'December'}
def dayToWord(day):
day = int(day)
if day > 3:
return str(day) + 'th'
elif day == 3:
return str(day) + 'rd'
elif day == 2 :
return str(day) + 'nd'
else: return str(day) + 'st'
def numToWord(number):
try:
number = int(number)
d = {1 : 'one', 2 : 'two', 3 : 'three', 4 : 'four', 5 : 'five',
6 : 'six', 7 : 'seven', 8 : 'eight', 9 : 'nine', 10 : 'ten',
11 : 'eleven', 12 : 'twelve', 13 : 'thirteen', 14 : 'fourteen',
15 : 'fifteen', 16 : 'sixteen', 17 : 'seventeen', 18 : 'eighteen',
19 : 'nineteen', 20 : 'twenty',
30 : 'thirty', 40 : 'forty', 50 : 'fifty', 60 : 'sixty',
70 : 'seventy', 80 : 'eighty', 90 : 'ninety' }
if number < 20:
return d[number]
else:
if number % 10 == 0: return d[number]
else: return d[number // 10 * 10] + '-' + d[number % 10]
except:
return number
def labelJurisdiction(text, jurisdiction):
jurisdictions = []
jurisdiction = jurisdiction.replace('_', ' ')
for match in re.finditer(jurisdiction, text):
tup = (match.start(), match.end(), 'jurisdiction')
jurisdictions.append(tup)
return jurisdictions
def labelEffectiveDate(text, date):
dates = []
year, month, day = date.split('-')
dateFormats = [month + '/' + day + '/' + year,
month + '/' + day + '/' + year[-2:],
month[1] + '/' + day + '/' + year,
month[1] + '/' + day[1] + '/' + year,
month[1] + '/' + day + '/' + year[-2:],
month[1] + '/' + day[1] + '/' + year[-2:],
dayToWord(day) + ' of ' + months[month] + ', ' + year,
dayToWord(day) + ' day of ' + months[month] + ', ' + year,
months[month] + ' ' + day + ', ' + year ]
for format in dateFormats:
for match in re.finditer(format, text, flags=re.IGNORECASE):
tup = (match.start(), match.end(), 'effective_date')
dates.append(tup)
return dates
def labelParties(text, party):
parties = []
if 'Inc' in party:
regular = ''
for word in party.split('_'):
regular += word + '(.*)'
party = regular
party = party.replace('_', ' ')
for match in re.finditer(party, text, flags=re.IGNORECASE):
tup = (match.start(), match.end(), 'party')
parties.append(tup)
return parties
def labelTerms(text, term):
terms = []
term = term.split('_')
number = numToWord(term[0])
units = term[1]
for match in re.finditer(number + ' ' + units, text, flags=re.IGNORECASE):
tup = (match.start(), match.end(), 'term')
terms.append(tup)
return terms
expectEntities = []
for expect in expected:
# expect = expect.split()
entities = []
for e in expect:
label, entity = e.split('=')
entities.append((label, entity))
expectEntities.append(entities)
trainData =[]
for i in range(len(expectEntities)):
listOfEntities = []
for entity in expectEntities[i]:
if entity[0] == 'effective_date':
listOfEntities.append(labelEffectiveDate(NDAs[i], entity[1]))
elif entity[0] == 'jurisdiction':
listOfEntities.append(labelJurisdiction(NDAs[i], entity[1]))
elif entity[0] == 'party':
listOfEntities.append(labelParties(NDAs[i], entity[1]))
else: listOfEntities.append(labelTerms(NDAs[i], entity[1]))
listOfEntities = [item for sublist in listOfEntities for item in sublist]
trainData.append((NDAs[i], {'entities': listOfEntities}))
import spacy
from spacy.tokens import DocBin
model = None
nIter = 100
if model is not None:
nlp = spacy.load(model)
print('Loaded model')
else:
nlp = spacy.blank('en')
print('Created blank "en" model')
if 'ner' not in nlp.pipe_names:
# ner = nlp.create_pipe('ner')
ner = nlp.add_pipe('ner', last=True)
else:
ner = nlp.get_pipe('ner')
Created blank "en" model
for data in trainData:
for ent in data[1].get('entities'):
ner.add_label(ent[2])
otherPipes = [pipe for pipe in nlp.pipe_names if pipe != 'ner']
# import random
from tqdm import tqdm
from spacy.training.example import Example
with nlp.disable_pipes(*otherPipes):
optimizer = nlp.begin_training()
for itn in range(nIter):
# random.shuffle(trainData)
losses = {}
for text, annotations in tqdm(trainData):
try:
doc = nlp.make_doc(text)
example = Example.from_dict(doc, annotations)
nlp.update([example], drop=0.5, sgd=optimizer, losses=losses)
except:
pass
print(losses)
1%| | 3/254 [00:00<01:11, 3.49it/s]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "03efbda01358533c167ca9b1e6d72051.pdf effective_dat..." with entities "[(7513, 7521, 'effective_date'), (15032, 15040, 'e...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 2%|▏ | 4/254 [00:01<02:28, 1.68it/s]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "03fd0e629b617da00c54794a8a78b24d.pdf effective_dat..." with entities "[(287, 300, 'effective_date'), (25276, 25289, 'eff...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 2%|▏ | 6/254 [00:04<04:11, 1.01s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "04bf0791804e8487c91ab84eaa47a335.pdf effective_dat..." with entities "[(198, 216, 'effective_date'), (22663, 22681, 'eff...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 3%|▎ | 8/254 [00:07<04:37, 1.13s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "0587275477c6ad6d0d72419383e04b88.pdf effective_dat..." with entities "[(4528, 4536, 'jurisdiction'), (4604, 4612, 'juris...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 4%|▎ | 9/254 [00:12<09:04, 2.22s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "05947711a24a5b7ce401911d31e19c91.pdf effective_dat..." with entities "[(18271, 18279, 'jurisdiction'), (18507, 18515, 'j...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 6%|▌ | 14/254 [00:18<04:18, 1.08s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "0859334b76224ff82c1312ae7b2b5da1.pdf effective_dat..." with entities "[(279, 296, 'effective_date'), (22981, 22998, 'eff...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 7%|▋ | 17/254 [00:20<03:29, 1.13it/s]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "0c3ab1d0c8bb3b1c2f7a64f3ab584368.pdf effective_dat..." with entities "[(243, 259, 'effective_date'), (35225, 35241, 'eff...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 7%|▋ | 18/254 [00:23<04:38, 1.18s/it]/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages/spacy/training/iob_utils.py:141: UserWarning: [W030] Some entities could not be aligned in the text "0c7b90701575b147c4ac245ca478ee7c.pdf effective_dat..." with entities "[(10058, 10065, 'jurisdiction'), (10252, 10259, 'j...". Use `spacy.training.offsets_to_biluo_tags(nlp.make_doc(text), entities)` to check the alignment. Misaligned entities ('-') will be ignored during training. warnings.warn( 7%|▋ | 19/254 [00:25<05:25, 1.39s/it]