This commit is contained in:
Bowske 2020-05-18 21:34:26 +02:00
parent c0b52698a7
commit cedb309f02
5 changed files with 108 additions and 83 deletions

101
raport_adamB.md Normal file
View File

@ -0,0 +1,101 @@
# Sztuczna Inteligencja
**Temat projektu:** Inteligenta Śmieciarka
**Zespół:** Kacper Borkowski, Adam Borowski, Adam Osiowy
**Podprojekt:** Adam Borowski
---
## 1. Temat podprojektu:
Celem projektu było utworzenie klasyfikatora rodzajów danych wejściowych(śmieci) na podstawie zdjęć. Do tego celu wykorzystano bibliotekę [PyTorch](https://pytorch.org/docs/stable/index.html). Cały podprojekt opiera się na utworzeniu sieci konwolucyjnej i przetworzeniu inputu przez kolejne jej warstwy.
## 2. Model sieci:
```
class Net(nn.Module): # klasa Net dziedziczaca po klasie bazowej nn.Module
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 71 * 71, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 4)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(x.size(0), 16 * 71 * 71)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
- conv1, conv2 warstwy konwolucyjna, rozmiar filtra 3×3, posiadające 3 kanały wejściowe (RGB) i kanały wyjściowe dla następnych warstw
- pool - operacja `max-poolingu` - wyciaganie najwazniejszej informacji z zadanego obszaru obrazu
![model](resources/screenShots/maxpool.png)
- fc1, fc2, fc3 - warstwy liniowe - `full connection layers` - w odróznieniu od warstw konwolucyjnych, każdy neuron dostaje input o neuronie z poprzedniej warstwy. W warstwie konwolucyjnej neurony wiedzą tylko o określonych neuronach z poprzedniego layera
![model](resources/screenShots/fc.png)
- metoda `forward` - metoda forward określa cały przepływ(flow) inputu przez warstwy aż do outputu. W pierwszej części tensor danej wejściowej(tensor zdjęcia) przepuszczany jest przez dwie warstwy konwolucyjne i wykonywana jest na nim wcześniej wspomniana operacja `max-poolingu`. W następnej części wypłaszczamy x, wszystkie wymiary przechowujace dane obrazu 16 kanalow o rozmiarach 71×71 rozciągamy jako jeden długi wektor. Na koniec przepuszczamy tensor przez warstwy liniowe i zwracamy output.
## 3. Trening:
```
def train():
net = Net()
trainset = torchvision.datasets.ImageFolder(
root='./resources/zbior_uczacy', transform=transform)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=1, shuffle=True, num_workers=2)
classes = ('glass', 'metal', 'paper', 'plastic')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss))
running_loss = 0.0
print('Finished Training')
PATH = './wytrenowaned.pth'
torch.save(net.state_dict(), PATH)
```
- na początku zainicjowano sieć, pobrano zbiór uczący i znormalizowano jego wnętrze, aby każde zdjęcie było pod postacią Tensora(tego wymaga model sieci)
- następnie zdefiniowano kryterium do wyznaczania jakości klasyfikacji zdjęć do klas i wyznaczono optymalizator(w tym przypadku SGD, moglby tez byc Adam)
- potem wchodzimy do pętli i iterujemy po data secie, pobieramy inputy, czyścimy gradienty z poprzedniej iteracji, za pomocą algorytmu propagacji wstecznej liczymy pochodne z utraconej wartości, wyswietlamy w konsoli loss z danej iteracji,
- następnie zapisujemy wytrenowany model
## 4. Przewidywanie:
```
def predict(img_path):
net = Net()
PATH = './wytrenowaned.pth'
img = Image.open(img_path)
pil_to_tensor = transforms.ToTensor()(img).unsqueeze_(0)
classes = ('glass', 'metal', 'paper', 'plastic')
net.load_state_dict(torch.load(PATH))
net.eval()
outputs = net(pil_to_tensor)
return classes[torch.max(outputs, 1)[1]]
```
- zainicjowano sieć, wczytano ścieżke, przetransformowano argument funkcji(zdjecie) do porządanego formatu
- następnie przekazano tensor jako argument do instancji klasy sieci
- w ostatnim kroku za pomocą funkcji `max` wyciągnięto największą wagę i na jej podstawie rozpoznano klasę

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

View File

@ -9,27 +9,12 @@ import numpy as np
import torch.optim as optim
from PIL import Image
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
# def imshow(img):
# img = img / 2 + 0.5
# npimg = img.numpy()
# plt.imshow(np.transpose(npimg, (1, 2, 0)))
# plt.show()
# dataiter = iter(trainloader)
# images, labels = dataiter.next()
# # show images
# imshow(torchvision.utils.make_grid(images))
# # print labels
# print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
@ -38,7 +23,7 @@ class Net(nn.Module):
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 71 * 71, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
self.fc3 = nn.Linear(84, 4)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
@ -50,40 +35,31 @@ class Net(nn.Module):
return x
def train():
net = Net()
trainset = torchvision.datasets.ImageFolder(
root='./resources/zbior_uczacy', transform=transform)
trainloader = torch.utils.data.DataLoader(
trainset, batch_size=1, shuffle=True, num_workers=2)
trainset, batch_size=2, shuffle=True, num_workers=2)
classes = ('glass', 'metal', 'paper', 'plastic')
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10): # loop over the dataset multiple times
print("siema")
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i: # print every 2000 mini-batches
if i:
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss))
running_loss = 0.0
print("kyrw")
print('Finished Training')
PATH = './wytrenowaned.pth'
@ -95,61 +71,9 @@ def predict(img_path):
PATH = './wytrenowaned.pth'
img = Image.open(img_path)
pil_to_tensor = transforms.ToTensor()(img).unsqueeze_(0)
if(pil_to_tensor.shape[1] == 1):
print(img_path)
classes = ('glass', 'metal', 'paper', 'plastic')
# testset = torchvision.datasets.ImageFolder(
# root='./resources/smieci', transform=transform)
# testloader = torch.utils.data.DataLoader(
# testset, batch_size=4, shuffle=True, num_workers=2)
# dataiter = iter(testloader)
# images, labels = dataiter.next()
# print images
# imshow(torchvision.utils.make_grid(images))
# print('GroundTruth: ', ' '.join('%5s' %
# classes[labels[j]] for j in range(4)))
# print('---')
# print(images)
# print('---')
net.load_state_dict(torch.load(PATH))
net.eval()
outputs = net(pil_to_tensor)
return classes[torch.max(outputs, 1)[1]]
# print(classes[torch.max(outputs, 1)[1]])
# print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
# for j in range(1)))
# correct = 0
# total = 0
# with torch.no_grad():
# for data in testloader:
# images, labels = data
# outputs = net(images)
# _, predicted = torch.max(outputs.data, 1)
# total += labels.size(0)
# correct += (predicted == labels).sum().item()
# print('Accuracy of the network on the test images: %d %%' % (
# 100 * correct / total))
# class_correct = list(0. for i in range(4))
# class_total = list(0. for i in range(4))
# with torch.no_grad():
# for data in testloader:
# images, labels = data
# outputs = net(images)
# _, predicted = torch.max(outputs, 1)
# c = (predicted == labels).squeeze()
# for i in range(3):
# label = labels[i]
# print(labels)
# class_correct[label] += c[i].item()
# class_total[label] += 1
# for i in range(4):
# print('Accuracy of %5s : %2d %%' % (
# classes[i], 100 * class_correct[i] / class_total[i]))
# train()

Binary file not shown.