93 lines
2.8 KiB
Markdown
93 lines
2.8 KiB
Markdown
# Podprojekt - sieć neuronowa"
|
|
**Twórca: Marcin Kwapisz**
|
|
|
|
**Klawisz F7 uruchamia program**
|
|
|
|
Program otrzymuje zdjęcie aktualnego pola i za
|
|
pomocą sieci neuronowej określa jakie to jest pole
|
|
i wybiera tryb w jakim ma pracować traktor
|
|
|
|
Sieć neuronowa została nauczona przy użyciu modułu darknet. Sieć została użyta po
|
|
20000 iteracjach treningowych
|
|
|
|
**Main**
|
|
```
|
|
def main(self):
|
|
self.pole = self.ui.field_images[self.field.get_value(self.traktor.get_poz())]
|
|
self.img = pygame.surfarray.array3d(self.pole)
|
|
self.img = self.img.transpose([1,0,2])
|
|
self.img = cv2.cvtColor(self.img, cv2.COLOR_RGB2BGR)
|
|
self.reco = self.mode(self.recognition(self.img))
|
|
if self.reco == 10:
|
|
print("Nic nie trzeba robić")
|
|
else:
|
|
self.traktor.set_mode(self.reco)
|
|
```
|
|
Wywołuje wszystkie pozostałe funkcje programu
|
|
|
|
**Get_output_layers**
|
|
```
|
|
def get_output_layers(self,net):
|
|
layer_names = net.getLayerNames()
|
|
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
|
|
return output_layers
|
|
```
|
|
Zwraca nazwy kolejnych warstw, warstwa wyjściowa nie jest połączona z żadną następną warstwą
|
|
|
|
**Recognition**
|
|
```
|
|
def recognition(self,photo):
|
|
image = photo
|
|
|
|
Width = image.shape[1]
|
|
Height = image.shape[0]
|
|
scale = 0.00392
|
|
|
|
with open("si.names", 'r') as f:
|
|
classes = [line.strip() for line in f.readlines()]
|
|
|
|
COLORS = np.random.uniform(0, 255, size=(len(classes), 3))
|
|
|
|
net = cv2.dnn.readNet("si_20000.weights", "si.cfg")
|
|
|
|
blob = cv2.dnn.blobFromImage(image, scale, (416, 416), (0, 0, 0), True, crop=False)
|
|
|
|
net.setInput(blob)
|
|
|
|
outs = net.forward(self.get_output_layers(net))
|
|
|
|
class_ids = []
|
|
confidences = []
|
|
boxes = []
|
|
conf_threshold = 0.5
|
|
nms_threshold = 0.4
|
|
|
|
for out in outs:
|
|
for detection in out:
|
|
scores = detection[5:]
|
|
class_id = np.argmax(scores)
|
|
confidence = scores[class_id]
|
|
if confidence > 0.5:
|
|
class_ids.append(class_id)
|
|
return class_ids[0]
|
|
```
|
|
Odpowiada za odebranie zdjęcia od funkcji głównej i
|
|
używa sieci neuronowej do rozpoznania zdjęcia
|
|
|
|
**Mode**
|
|
```
|
|
def mode(self,mode):
|
|
self.mode_value = mode
|
|
if self.mode_value in [0, 1, 2, 3]:
|
|
return 0
|
|
elif self.mode_value in [1, 3, 5, 7]:
|
|
return 1
|
|
elif self.mode_value in [0, 1, 4, 5]:
|
|
return 2
|
|
elif self.mode_value in [8]:
|
|
return 3
|
|
elif self.mode_value in [6]:
|
|
return 10
|
|
```
|
|
Na podstawie klasy otrzymanej przez funkcję **recognition** wybiera tryb
|
|
w jakim ma pracować traktor |