ium_444452/Scripts/train_neural_network.py

94 lines
2.9 KiB
Python
Raw Normal View History

2022-04-24 22:51:20 +02:00
#!/usr/bin/python
import os
import sys
import pandas as pd
2022-05-03 00:00:08 +02:00
from keras.models import Sequential
2022-04-24 22:51:20 +02:00
from keras import layers
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
2022-05-08 13:30:09 +02:00
from sacred.observers import MongoObserver
from sacred.observers import FileStorageObserver
from sacred import Experiment
2022-04-24 22:51:20 +02:00
2022-05-08 13:30:09 +02:00
ex = Experiment(name='fake_job_classification_training')
# ex.observers.append(MongoObserver(url='mongodb://mongo_user:mongo_password_IUM_2021@localhost:27017'))
ex.observers.append(FileStorageObserver('my_runs'))
2022-04-24 22:51:20 +02:00
2022-05-08 13:30:09 +02:00
data_path = sys.argv[1]
epochs = int(sys.argv[2])
num_words = int(sys.argv[3])
batch_size = int(sys.argv[4])
pad_length = int(sys.argv[5])
2022-04-24 22:51:20 +02:00
2022-05-02 22:51:16 +02:00
2022-05-08 13:30:09 +02:00
@ex.config
def config():
data_path = data_path
epochs = epochs
num_words = num_words
batch_size = batch_size
pad_length = pad_length
@ex.capture
def tokenize(x, x_train, pad_length, num_words):
2022-05-02 22:51:16 +02:00
tokenizer = Tokenizer(num_words=num_words)
2022-04-24 22:51:20 +02:00
tokenizer.fit_on_texts(x)
train_x = tokenizer.texts_to_sequences(x_train)
vocabulary_length = len(tokenizer.word_index) + 1
2022-05-02 22:51:16 +02:00
train_x = pad_sequences(train_x, padding='post', maxlen=pad_length)
2022-05-03 00:00:08 +02:00
return train_x, vocabulary_length
2022-04-24 22:51:20 +02:00
2022-05-02 19:21:28 +02:00
def save_model(model):
2022-05-04 12:27:39 +02:00
# model_name = 'neural_net_' + datetime.datetime.today().strftime('%d-%b-%Y-%H:%M:%S')
model_name = 'neural_net'
2022-05-02 19:21:28 +02:00
model.save(os.path.join(os.getcwd(), 'model', model_name), save_format='h5', overwrite=True)
2022-05-08 13:30:09 +02:00
ex.add_artifact(os.path.join(os.getcwd(), 'model', model_name))
2022-04-24 22:51:20 +02:00
2022-05-08 13:30:09 +02:00
@ex.capture
def train_model(model, x_train, y_train, epochs, batch_size):
2022-05-02 22:51:16 +02:00
model.fit(x_train, y_train, epochs=epochs, verbose=False, batch_size=batch_size)
2022-04-24 22:51:20 +02:00
2022-05-08 13:30:09 +02:00
@ex.capture
def get_model(vocabulary_length, batch_size, pad_length):
2022-04-24 22:51:20 +02:00
model = Sequential()
model.add(layers.Embedding(input_dim=vocabulary_length,
2022-05-02 22:51:16 +02:00
output_dim=batch_size,
input_length=pad_length))
2022-04-24 22:51:20 +02:00
model.add(layers.Flatten())
model.add(layers.Dense(10, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
return model
def split_data(data):
x = data['tokens']
y = data['fraudulent']
return x, y
def load_data(data_path, filename) -> pd.DataFrame:
return pd.read_csv(os.path.join(data_path, filename))
2022-05-08 13:30:09 +02:00
@ex.main
def main(data_path, num_words, epochs, batch_size, pad_length, _run):
2022-04-24 22:51:20 +02:00
abs_data_path = os.path.abspath(data_path)
train_data = load_data(abs_data_path, 'train_data.csv')
test_data = load_data(abs_data_path, 'test_data.csv')
x_train, y_train = split_data(train_data)
2022-05-03 00:00:08 +02:00
x_test, _ = split_data(test_data)
x_train, vocab_size = tokenize(pd.concat([x_train, x_test]), x_train)
2022-05-02 22:51:16 +02:00
model = get_model(vocab_size)
2022-04-24 22:51:20 +02:00
train_model(model, x_train, y_train)
2022-05-02 19:21:28 +02:00
save_model(model)
2022-04-24 22:51:20 +02:00
2022-05-08 13:30:09 +02:00
ex.run()