ads/kibice_mlb/kibice.ipynb
2022-10-18 00:24:12 +02:00

854 lines
88 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Analiza zależności ilości kibiców w baseball mlb"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Unnamed: 0</th>\n",
" <th>attendance</th>\n",
" <th>away_team</th>\n",
" <th>away_team_errors</th>\n",
" <th>away_team_hits</th>\n",
" <th>away_team_runs</th>\n",
" <th>date</th>\n",
" <th>field_type</th>\n",
" <th>game_type</th>\n",
" <th>home_team</th>\n",
" <th>...</th>\n",
" <th>temperature</th>\n",
" <th>wind_speed</th>\n",
" <th>wind_direction</th>\n",
" <th>sky</th>\n",
" <th>total_runs</th>\n",
" <th>game_hours_dec</th>\n",
" <th>season</th>\n",
" <th>home_team_win</th>\n",
" <th>home_team_loss</th>\n",
" <th>home_team_outcome</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>0</td>\n",
" <td>40030.0</td>\n",
" <td>New York Mets</td>\n",
" <td>1</td>\n",
" <td>7</td>\n",
" <td>3</td>\n",
" <td>2016-04-03</td>\n",
" <td>on grass</td>\n",
" <td>Night Game</td>\n",
" <td>Kansas City Royals</td>\n",
" <td>...</td>\n",
" <td>74.0</td>\n",
" <td>14.0</td>\n",
" <td>from Right to Left</td>\n",
" <td>Sunny</td>\n",
" <td>7</td>\n",
" <td>3.216667</td>\n",
" <td>regular season</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Win</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>21621.0</td>\n",
" <td>Philadelphia Phillies</td>\n",
" <td>0</td>\n",
" <td>5</td>\n",
" <td>2</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Night Game</td>\n",
" <td>Cincinnati Reds</td>\n",
" <td>...</td>\n",
" <td>55.0</td>\n",
" <td>24.0</td>\n",
" <td>from Right to Left</td>\n",
" <td>Overcast</td>\n",
" <td>5</td>\n",
" <td>2.383333</td>\n",
" <td>regular season</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Win</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2</td>\n",
" <td>12622.0</td>\n",
" <td>Minnesota Twins</td>\n",
" <td>0</td>\n",
" <td>5</td>\n",
" <td>2</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Night Game</td>\n",
" <td>Baltimore Orioles</td>\n",
" <td>...</td>\n",
" <td>48.0</td>\n",
" <td>7.0</td>\n",
" <td>out to Leftfield</td>\n",
" <td>Unknown</td>\n",
" <td>6</td>\n",
" <td>3.183333</td>\n",
" <td>regular season</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Win</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>3</td>\n",
" <td>18531.0</td>\n",
" <td>Washington Nationals</td>\n",
" <td>0</td>\n",
" <td>8</td>\n",
" <td>3</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Night Game</td>\n",
" <td>Atlanta Braves</td>\n",
" <td>...</td>\n",
" <td>65.0</td>\n",
" <td>10.0</td>\n",
" <td>from Right to Left</td>\n",
" <td>Cloudy</td>\n",
" <td>4</td>\n",
" <td>2.883333</td>\n",
" <td>regular season</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>Loss</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>4</td>\n",
" <td>18572.0</td>\n",
" <td>Colorado Rockies</td>\n",
" <td>1</td>\n",
" <td>8</td>\n",
" <td>4</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Day Game</td>\n",
" <td>Arizona Diamondbacks</td>\n",
" <td>...</td>\n",
" <td>77.0</td>\n",
" <td>0.0</td>\n",
" <td>in unknown direction</td>\n",
" <td>In Dome</td>\n",
" <td>7</td>\n",
" <td>2.650000</td>\n",
" <td>regular season</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>Loss</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2458</th>\n",
" <td>2458</td>\n",
" <td>31042.0</td>\n",
" <td>Toronto Blue Jays</td>\n",
" <td>2</td>\n",
" <td>7</td>\n",
" <td>5</td>\n",
" <td>2016-04-03</td>\n",
" <td>on turf</td>\n",
" <td>Day Game</td>\n",
" <td>Tampa Bay Rays</td>\n",
" <td>...</td>\n",
" <td>72.0</td>\n",
" <td>0.0</td>\n",
" <td>in unknown direction</td>\n",
" <td>In Dome</td>\n",
" <td>8</td>\n",
" <td>2.850000</td>\n",
" <td>regular season</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>Loss</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2459</th>\n",
" <td>2459</td>\n",
" <td>39500.0</td>\n",
" <td>St. Louis Cardinals</td>\n",
" <td>0</td>\n",
" <td>5</td>\n",
" <td>1</td>\n",
" <td>2016-04-03</td>\n",
" <td>on grass</td>\n",
" <td>Day Game</td>\n",
" <td>Pittsburgh Pirates</td>\n",
" <td>...</td>\n",
" <td>39.0</td>\n",
" <td>14.0</td>\n",
" <td>out to Leftfield</td>\n",
" <td>Unknown</td>\n",
" <td>5</td>\n",
" <td>3.033333</td>\n",
" <td>regular season</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Win</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2460</th>\n",
" <td>2460</td>\n",
" <td>20098.0</td>\n",
" <td>San Francisco Giants</td>\n",
" <td>0</td>\n",
" <td>6</td>\n",
" <td>3</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Day Game</td>\n",
" <td>Milwaukee Brewers</td>\n",
" <td>...</td>\n",
" <td>66.0</td>\n",
" <td>0.0</td>\n",
" <td>in unknown direction</td>\n",
" <td>In Dome</td>\n",
" <td>7</td>\n",
" <td>3.316667</td>\n",
" <td>regular season</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Win</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2461</th>\n",
" <td>2461</td>\n",
" <td>17883.0</td>\n",
" <td>Detroit Tigers</td>\n",
" <td>0</td>\n",
" <td>13</td>\n",
" <td>7</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Day Game</td>\n",
" <td>Miami Marlins</td>\n",
" <td>...</td>\n",
" <td>71.0</td>\n",
" <td>0.0</td>\n",
" <td>in unknown direction</td>\n",
" <td>In Dome</td>\n",
" <td>10</td>\n",
" <td>3.366667</td>\n",
" <td>regular season</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>Loss</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2462</th>\n",
" <td>2462</td>\n",
" <td>10298.0</td>\n",
" <td>Boston Red Sox</td>\n",
" <td>1</td>\n",
" <td>10</td>\n",
" <td>6</td>\n",
" <td>2016-04-06</td>\n",
" <td>on grass</td>\n",
" <td>Night Game</td>\n",
" <td>Cleveland Indians</td>\n",
" <td>...</td>\n",
" <td>60.0</td>\n",
" <td>7.0</td>\n",
" <td>out to Leftfield</td>\n",
" <td>Unknown</td>\n",
" <td>13</td>\n",
" <td>3.483333</td>\n",
" <td>regular season</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>Win</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>2463 rows × 26 columns</p>\n",
"</div>"
],
"text/plain": [
" Unnamed: 0 attendance away_team away_team_errors \\\n",
"0 0 40030.0 New York Mets 1 \n",
"1 1 21621.0 Philadelphia Phillies 0 \n",
"2 2 12622.0 Minnesota Twins 0 \n",
"3 3 18531.0 Washington Nationals 0 \n",
"4 4 18572.0 Colorado Rockies 1 \n",
"... ... ... ... ... \n",
"2458 2458 31042.0 Toronto Blue Jays 2 \n",
"2459 2459 39500.0 St. Louis Cardinals 0 \n",
"2460 2460 20098.0 San Francisco Giants 0 \n",
"2461 2461 17883.0 Detroit Tigers 0 \n",
"2462 2462 10298.0 Boston Red Sox 1 \n",
"\n",
" away_team_hits away_team_runs date field_type game_type \\\n",
"0 7 3 2016-04-03 on grass Night Game \n",
"1 5 2 2016-04-06 on grass Night Game \n",
"2 5 2 2016-04-06 on grass Night Game \n",
"3 8 3 2016-04-06 on grass Night Game \n",
"4 8 4 2016-04-06 on grass Day Game \n",
"... ... ... ... ... ... \n",
"2458 7 5 2016-04-03 on turf Day Game \n",
"2459 5 1 2016-04-03 on grass Day Game \n",
"2460 6 3 2016-04-06 on grass Day Game \n",
"2461 13 7 2016-04-06 on grass Day Game \n",
"2462 10 6 2016-04-06 on grass Night Game \n",
"\n",
" home_team ... temperature wind_speed \\\n",
"0 Kansas City Royals ... 74.0 14.0 \n",
"1 Cincinnati Reds ... 55.0 24.0 \n",
"2 Baltimore Orioles ... 48.0 7.0 \n",
"3 Atlanta Braves ... 65.0 10.0 \n",
"4 Arizona Diamondbacks ... 77.0 0.0 \n",
"... ... ... ... ... \n",
"2458 Tampa Bay Rays ... 72.0 0.0 \n",
"2459 Pittsburgh Pirates ... 39.0 14.0 \n",
"2460 Milwaukee Brewers ... 66.0 0.0 \n",
"2461 Miami Marlins ... 71.0 0.0 \n",
"2462 Cleveland Indians ... 60.0 7.0 \n",
"\n",
" wind_direction sky total_runs game_hours_dec \\\n",
"0 from Right to Left Sunny 7 3.216667 \n",
"1 from Right to Left Overcast 5 2.383333 \n",
"2 out to Leftfield Unknown 6 3.183333 \n",
"3 from Right to Left Cloudy 4 2.883333 \n",
"4 in unknown direction In Dome 7 2.650000 \n",
"... ... ... ... ... \n",
"2458 in unknown direction In Dome 8 2.850000 \n",
"2459 out to Leftfield Unknown 5 3.033333 \n",
"2460 in unknown direction In Dome 7 3.316667 \n",
"2461 in unknown direction In Dome 10 3.366667 \n",
"2462 out to Leftfield Unknown 13 3.483333 \n",
"\n",
" season home_team_win home_team_loss home_team_outcome \n",
"0 regular season 1 0 Win \n",
"1 regular season 1 0 Win \n",
"2 regular season 1 0 Win \n",
"3 regular season 0 1 Loss \n",
"4 regular season 0 1 Loss \n",
"... ... ... ... ... \n",
"2458 regular season 0 1 Loss \n",
"2459 regular season 1 0 Win \n",
"2460 regular season 1 0 Win \n",
"2461 regular season 0 1 Loss \n",
"2462 regular season 1 0 Win \n",
"\n",
"[2463 rows x 26 columns]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"\n",
"data = pd.read_csv(\"baseball_reference_2016_clean.csv\")\n",
"\n",
"data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pogoda\n",
"\n",
"![image](sky.jpg)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Sunny', 'Overcast', 'Unknown', 'Cloudy', 'In Dome', 'Drizzle',\n",
" 'Rain', 'Night'], dtype=object)"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['sky'].unique()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"sunny = data[data['sky'] == 'Sunny']\n",
"overcast = data[data['sky'] == 'Overcast']\n",
"cloudy = data[data['sky'] == 'Cloudy']\n",
"in_dome = data[data['sky'] == 'In Dome']\n",
"drizzle = data[data['sky'] == 'Drizzle']\n",
"rain = data[data['sky'] == 'Rain']\n",
"night = data[data['sky'] == 'Night']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Średnia ilość kibiców w zależności od pogody"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAfuElEQVR4nO3debwcZZ3v8c83YZclYAKDCRDEoAaECJFNQBREgrLcGVAUJSwXhgsqjKKg1xkEwQGdEeQKyGoAFwjKJoqBF7sghBNI2AISWQyZCIGEEECBwO/+Ub+Goulz0qdyus9pzvf9evXrVD3PU1W/qu7Tv66nqp9WRGBmZlbFkP4OwMzMOpeTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlV5iRi1oCk0ZJC0jL9HUsnkPS4pJ36Ow5rPycRG1Ak3SRpgaTl68rf8iblN/m3krS1pEWShpbKzumm7KdLua1Jkk5YmnXYO4eTiA0YkkYD2wEB7N6/0XScLor/581KZdsBT9aVbQ/c0sa4esUfCjqPk4gNJPsBdwCTgIm1QkkXAesCv5X0gqRv8uYb4XNZtnW2PVDSzDybmSJpvdJ6QtKhkh6R9Jyk0yUp64ZK+i9Jz0h6FPh0OTBJB+R6F0l6VNK/lup2kPSkpK9LelrSXEkHlOpXlPTfkp6QtFDSHyWtmHVbSbo945khaYcqBy4iXs1jt32ud01gOWByXdmGwC2Shkg6RtJfJD0rabKkNUoxXyrpbxnvLZI2yvJDgH2Bb+Zx/20pjHGS7s1lLpG0Qml9n5E0PffzdkmblOoel3S0pHuBF51IOkxE+OHHgHgAs4DDgM2BV4G1SnWPAzuV5kdTnLEsUyrbI9fxQWAZ4DvA7aX6AK4GhlEkpXnALll3KPAQsA6wBnBjef0USWUDQMDHgJeAzbJuB2AxcDywLLBr1q+e9acDNwEjgaHANsDyOf9sth8CfDLnR1Q8fscCV+b0XsCFuc5y2aM5fQRF0hmVsZwF/Kq0rgOBVbLuVGB6qW4ScELdth8HpgLvyeM3Ezg06z4MPA1smfs/MdsvX1p2eh77Ffv7dehHL193/R2AH35EBMC2mTiG5/xDwL+V6ptJItcAB5Xmh+Sb+Xo5H8C2pfrJwDE5fUPtTS/nd65ff128VwBH5PQOwN/rYnka2Cpj+DuwaYN1HA1cVFc2BZhY8RjukElIwI+Bg4GVgadKZT/LtjOBHUvLrp3H/237S5F0A1gt57tLIl8szf8A+GlOnwl8r679w8DHSsse2N+vQT+qPdydZQPFRODaiHgm539JqUurSesBP84uk+eA+RRvniNLbf5Wmn6J4k0Wik/Qs0t1T5RXLGmCpDskzc917woMLzV5NiIWN1j3cGAF4C/dxLt3Ld5c77YUb+hvIWnf7D56QdI1Dfe+OLNYGdiYogvr1oh4IferVlbrBlwPuLy03ZnAa8Ba2bV3UnZ1PU/xJk/d/jbS3bFdD/h63X6uQ3HMa8rH3jqI+x6t3+X1gc8CQyXV3oiWB4ZJ2jQiZlB8Ei5rNPz0bODEiPhFhTDmUryx1axbim954DcU12yujIhXJV1BkaCW5BngHxRdYTMaxHtRRBy8pJXkPvW4XxHxD0l3AbsBa0fEQ1l1a5ZtwptJZDbFp//b6tcj6UsUXYM7USSQ1YAFvLm/vR36u/a8nNhT+L1cpw0QPhOxgWBPik/BY4Fx+fggxZvfftnmKeC9pWXmAa/Xlf0U+FbpIvBqkvZuMobJwFcljZK0OnBMqW45iqQ2D1gsaQJFd9cSRcTrwPnAjyS9Jz/lb52J6efAbpI+leUr5EX6UU3G3MgtFNc7bi+V/THL5kZE7Yzop8CJtRsPJI2QtEfWrQK8TNE1thLw/bpt1D8XS3IOcKikLVV4l6RPS1qlNztmA5OTiA0EEyn66v8aEX+rPYCfAPvm3Tr/CXwnu0OOioiXgBOB27Jsq4i4HDgZuDi7Ye4HJjQZwzkU1yNmAHcDl9UqImIR8FWKRLMA+AJwVS/27yjgPuAuii62k4EhETGb4hP/tykS1GzgGyzd/+XNwJoUiaPmj1l2a6nsxxT7cK2kRRRdYVtm3YUU3XlzgAezruw8YGwe9yuWFFBEdFFcn/kJxfGbBezfm52ygUsRPos0M7NqfCZiZmaVOYmYmVllTiJmZlaZk4iZmVU26L4nMnz48Bg9enR/h2Fm1jGmTZv2TESMaFQ36JLI6NGj6erq6u8wzMw6hqQnuqtzd5aZmVXmJGJmZpU5iZiZWWVOImZmVpmTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlVNui+sW5m1g5q5seT26hVPx3lMxEzM6vMScTMzCpzEjEzs8qcRMzMrDInETMzq8xJxMzMKnMSMTOzypxEzMysMicRMzOrzEnEzMwqcxIxM7PKnETMzKwyJxEzM6vMScTMzCpzEjEzs8qcRMzMrDInETMzq8xJxMzMKmt5EpE0VNI9kq7O+fUl3SlplqRLJC2X5cvn/KysH11ax7ey/GFJnyqV75JlsyQd0+p9MTOzt2rHmcgRwMzS/MnAKRHxPmABcFCWHwQsyPJTsh2SxgL7ABsBuwBnZGIaCpwOTADGAp/PtmZm1iYtTSKSRgGfBs7NeQGfAH6dTS4A9szpPXKerN8x2+8BXBwRL0fEY8AsYIt8zIqIRyPiFeDibGtmZm3S6jORU4FvAq/n/LuB5yJicc4/CYzM6ZHAbICsX5jt3yivW6a7cjMza5OWJRFJnwGejohprdpGL2I5RFKXpK558+b1dzhmZu8YrTwT+Siwu6THKbqaPgH8GBgmaZlsMwqYk9NzgHUAsn414Nlyed0y3ZW/TUScHRHjI2L8iBEjln7PzMwMaGESiYhvRcSoiBhNcWH8hojYF7gR2CubTQSuzOmrcp6svyEiIsv3ybu31gfGAFOBu4AxebfXcrmNq1q1P2Zm9nbLLLlJnzsauFjSCcA9wHlZfh5wkaRZwHyKpEBEPCBpMvAgsBg4PCJeA5D0ZWAKMBQ4PyIeaOuemJkNcio+7A8e48ePj66urv4Ow8ze4aT+juCtluatXtK0iBjfqM7fWDczs8qcRMzMrDInETMzq8xJxMzMKnMSMTOzypxEzMysMicRMzOrzEnEzMwqcxIxM7PKnETMzKwyJxEzM6vMScTMzCpzEjEzs8qcRMzMrDInETMzq8xJxMzMKnMSMTOzypxEzMysMicRMzOrzEnEzMwqcxIxM7PKnETMzKwyJxEzM6vMScTMzCpzEjEzs8qcRMzMrDInETMzq8xJxMzMKlumvwPoJFJ/R/BWEf0dgZkNdk4iZoOQjhtYn4jiWH8i6lTuzjIzs8qcRMzMrDInETMzq8xJxMzMKnMSMTOzypxEzMysMicRMzOrzN8TsYHF3+g06ygtOxORtIKkqZJmSHpA0nFZvr6kOyXNknSJpOWyfPmcn5X1o0vr+laWPyzpU6XyXbJslqRjWrUvZmbWWCu7s14GPhERmwLjgF0kbQWcDJwSEe8DFgAHZfuDgAVZfkq2Q9JYYB9gI2AX4AxJQyUNBU4HJgBjgc9nWzMza5OWJZEovJCzy+YjgE8Av87yC4A9c3qPnCfrd5SkLL84Il6OiMeAWcAW+ZgVEY9GxCvAxdnWzMzapKUX1vOMYTrwNHAd8BfguYhYnE2eBEbm9EhgNkDWLwTeXS6vW6a78kZxHCKpS1LXvHnz+mDPzMwMWpxEIuK1iBgHjKI4c/hAK7fXQxxnR8T4iBg/YsSI/gjBzOwdqS23+EbEc8CNwNbAMEm1u8JGAXNyeg6wDkDWrwY8Wy6vW6a7cjMza5NW3p01QtKwnF4R+CQwkyKZ7JXNJgJX5vRVOU/W3xARkeX75N1b6wNjgKnAXcCYvNtrOYqL71e1an/MzOztlvg9EUkbAmcCa0XExpI2AXaPiBOWsOjawAV5F9UQYHJEXC3pQeBiSScA9wDnZfvzgIskzQLmUyQFIuIBSZOBB4HFwOER8VrG9mVgCjAUOD8iHujNzpuZ2dJRLOHLVJJuBr4BnBURH86y+yNi4zbE1+fGjx8fXV1dlZb19+DawAe5LfyjVK33TnopS5oWEeMb1TXTnbVSREytK1vcsKWZmQ0qzSSRZyRtQPEdDyTtBcxtaVRmZtYRmhk763DgbOADkuYAjwFfbGlU1mcGUrfFO7HLwmywW2ISiYhHgZ0kvQsYEhGLWh+WmZl1giV2Z0n6vqRhEfFiRCyStHreWWVmZoNcM9dEJuSXBQGIiAXAri2LyMzMOkYzSWSopOVrM/nFweV7aG9mZoNEMxfWfwFcL+lnOX8Ab462a2Zmg1gzF9ZPlnQvsGMWfS8iprQ2LDMz6wRN/TxuRFwDXNPiWMzMrMM0c3fWP0t6RNJCSc9LWiTp+XYEZ2ZmA1szZyI/AHaLiJmtDsbMzDpLM3dnPeUEYmZmjTRzJtIl6RLgCuDlWmFEXNaqoMzMrDM0k0RWBV4Cdi6VBeAkYmY2yDVzi+8B7QjEzKxHA+kHOt6hvzNTRTO/bLgCcBCwEbBCrTwiDmxhXGZm1gGaubB+EfBPwKeAm4FRgEfyNTOzpq6JvC8i9pa0R0RcIOmXwK2tDsysUwykXhZwT4u1VzNnIq/m3+ckbQysBqzZupDMzKxTNHMmcrak1YF/B64CVgb+o6VRmZlZR2jm7qxzc/Jm4L2tDcfMzDpJt0lE0td6WjAiftT34ZiZWSfp6Uxklfz7fuAjFF1ZALsBU1sZlJmZdYZuk0hEHAcg6RZgs4hYlPPfBX7XlujMzGxAa+burLWAV0rzr2SZmZkNcs3cnXUhMFXS5Tm/J/55XDMzo7m7s06U9Adg2yw6ICLuaW1YZmbWCZr6eVxgOjC31l7SuhHx11YFZWZmnaGZARi/AhwLPAW8BohiKPhNWhuamZkNdM2ciRwBvD8inm11MGZm1lmauTtrNrCw1YGYmVnnaeZM5FHgJkm/460/j+tvrJuZDXLNJJG/5mO5fJiZmQHN3eJb++b6ShHxUutDMjOzTrHEayKStpb0IPBQzm8q6YyWR2ZmZgNeMxfWT6X4adxnASJiBrB9C2MyM7MO0UwSISJm1xW9tqRlJK0j6UZJD0p6QNIRWb6GpOskPZJ/V89ySTpN0ixJ90rarLSuidn+EUkTS+WbS7ovlzlNGmg/VGpm9s7W1C2+krYBQtKyko4CZjax3GLg6xExFtgKOFzSWOAY4PqIGANcn/MAE4Ax+TgEOBOKpEPxZcctgS2AY2uJJ9scXFpulybiMjOzPtJMEjkUOBwYCcwBxgGHLWmhiJgbEXfn9CKKxDMS2IM3B3C8gGJAR7L8wijcAQyTtDZFV9p1ETE/IhYA1wG7ZN2qEXFHRATFQJG1dZmZWRs0c4vv+yNi33KBpI8CtzW7EUmjgQ8DdwJrRcTcrPobbw4rP5Lii401T2ZZT+VPNihvtP1DKM5uWHfddZsN28zMlqCZM5H/12RZQ5JWBn4DHBkRz5fr8gwiml1XVRFxdkSMj4jxI0aMaPXmzMwGjZ5+Y31rYBtgRN3vra8KDG1m5ZKWpUggv4iIy7L4KUlrR8Tc7JJ6OsvnAOuUFh+VZXOAHerKb8ryUQ3am5lZm/R0JrIcsDJFolml9Hge2GtJK847pc4DZtYNkXIVULvDaiJwZal8v7xLaytgYXZ7TQF2lrR6XlDfGZiSdc9L2iq3tV9pXWZm1gY9/cb6zcDNkv4eET8o10naG3hkCev+KPAl4D5J07Ps28BJwGRJBwFPAJ/Nut8DuwKzgJeAAzKO+ZK+B9yV7Y6PiPk5fRgwCVgRuCYfZmbWJs1cWN8H+EFd2beAS3taKCL+SPHbI43s2KB9UNwF1mhd5wPnNyjvAjbuKQ4zM2udnq6JTKA4Mxgp6bRS1SrAq60OzMzMBr6ezkT+B5gG7J5/a9aj6G4yM7NBrtsL6xExIyImAe8D7qXoNjoO+DjNfWPdzMze4XrqztoQ+Hw+ngEuARQRH29TbGZmNsD11J31EHAr8JmImAUg6d/aEpWZmXWEnr4n8s/AXOBGSedI2pHu77YyM7NBqKdrIldExD7AB4AbgSOBNSWdKWnnNsVnZmYD2BLHzoqIFyPilxGxG8XQIvcAR7c8MjMzG/Ca+lGqmohYkIMZvu3LgmZmNvj0KomYmZmVOYmYmVllTiJmZlaZk4iZmVXmJGJmZpU5iZiZWWVOImZmVpmTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlV5iRiZmaVOYmYmVllTiJmZlaZk4iZmVXmJGJmZpU5iZiZWWVOImZmVpmTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlV5iRiZmaVOYmYmVllTiJmZlaZk4iZmVXWsiQi6XxJT0u6v1S2hqTrJD2Sf1fPckk6TdIsSfdK2qy0zMRs/4ikiaXyzSXdl8ucJkmt2hczM2uslWcik4Bd6sqOAa6PiDHA9TkPMAEYk49DgDOhSDrAscCWwBbAsbXEk20OLi1Xvy0zM2uxliWRiLgFmF9XvAdwQU5fAOxZKr8wCncAwyStDXwKuC4i5kfEAuA6YJesWzUi7oiIAC4srcvMzNqk3ddE1oqIuTn9N2CtnB4JzC61ezLLeip/skF5Q5IOkdQlqWvevHlLtwdmZvaGfruwnmcQ0aZtnR0R4yNi/IgRI9qxSTOzQaHdSeSp7Ioi/z6d5XOAdUrtRmVZT+WjGpSbmVkbtTuJXAXU7rCaCFxZKt8v79LaCliY3V5TgJ0lrZ4X1HcGpmTd85K2yruy9iuty8zM2mSZVq1Y0q+AHYDhkp6kuMvqJGCypIOAJ4DPZvPfA7sCs4CXgAMAImK+pO8Bd2W74yOidrH+MIo7wFYErsmHmZm1UcuSSER8vpuqHRu0DeDwbtZzPnB+g/IuYOOlidHMzJaOv7FuZmaVOYmYmVllTiJmZlaZk4iZmVXmJGJmZpU5iZiZWWVOImZmVpmTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlV5iRiZmaVOYmYmVllTiJmZlaZk4iZmVXmJGJmZpU5iZiZWWVOImZmVpmTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlV5iRiZmaVOYmYmVllTiJmZlaZk4iZmVXmJGJmZpU5iZiZWWVOImZmVpmTiJmZVeYkYmZmlTmJmJlZZU4iZmZWmZOImZlV5iRiZmaVdXwSkbSLpIclzZJ0TH/HY2Y2mHR0EpE0FDgdmACMBT4vaWz/RmVmNnh0dBIBtgBmRcSjEfEKcDGwRz/HZGY2aCzT3wEspZHA7NL8k8CW9Y0kHQIckrMvSHq4DbH1ZDjwzNKuROqDSJrTN/F+t30B00cxt/Mg03mvC+i814ZfF9Ws111FpyeRpkTE2cDZ/R1HjaSuiBjf33E0q9PiBcfcLp0Wc6fFCwM/5k7vzpoDrFOaH5VlZmbWBp2eRO4CxkhaX9JywD7AVf0ck5nZoNHR3VkRsVjSl4EpwFDg/Ih4oJ/DasaA6VprUqfFC465XTot5k6LFwZ4zIqI/o7BzMw6VKd3Z5mZWT9yEjEzs8qcRKxtJI2TtOtSLP9dSUf1USw3SVrq2yYl3b4Uy46WdP/SxtCXujvGkg6VtF8v17W/pJ/0XXR9R9K5A210C0nHS9ppCW26e36GSTqsddF1r6MvrFt7SBLF9bPXl3JV44DxwO+XOqgBIiK26e8YWk3SMhHx0/6Oo7d6et1GxP/uh5B6FBH/sRSLDwMOA87om2ia5zORiiS9S9LvJM2QdL+kz0l6XNLwrB8v6aac/q6k8/PT76OSvprloyXNlHSOpAckXStpRUkbSLq7tK0x5fkm4/taxnW/pCMlnSTp8FL9G59oJH1D0l2S7pV0XCm2hyVdCNwPrCPpaEn35T6flO0OzmVnSPqNpJWyfO/c9gxJt+Qt2McDn5M0XdLnmtiH/TKmGZIuqqsbJ+mOrL9c0upZ/sYZhqThkh7P6RUlXZzH+3JgxSw/UNKppfUeLOmUXhznF/LvDrntX0t6SNIv8k2svv3muT8zgPLzsYKkn+XxvUfSx7N8f0lXSLouX19fzuf2ntz/NbLdBpL+IGmapFslfaAX+/B/Jf1Z0h+B95eO46mSuoAjaq8XSe/J56/2eE3SenVlf5f0sbptjMjXx135+Giz8fVGg9fteZK68v/ruFK78uvkBUkn5vNyh6S1WhFbXYyN/u8nSdor2+yar6Npkk6TdHVpFWNV914CnARskMf/h62M/20iwo8KD+BfgHNK86sBjwPDc348cFNOfxe4HVieYgiDZ4FlgdHAYmBctpsMfDGnbyyVfx/4Si9i2xy4D3gXsDLwAPBh4OZSmwcpvqi5M8UthKL4UHE1sH3G9jqwVbafkPuwUs6vkX/fXVrnCbU4c/sjc3pY/t0f+EmT+7AR8OfS8Vwjj+NROX8v8LGcPh44NadvAsbn9HDg8Zz+GsUt4ACb5HEfn8fnL8CyWXc78KFeHOsX8u8OwEKKL7wOAf4EbNug/b3A9jn9Q+D+nP56Kb4PAH8FVshjNgtYBRiR2zg0250CHJnT1wNjcnpL4IZevlZWAlbNbR2Vx/GMUrs3jn2p7HBgcl3ZbsCtFK/vN55v4Je14wGsC8xs0f/laN76uq29TofmPm3S4HUSwG45/QPgO62IrS7Gt/3fA5OAvfJ5nw2sn/W/Aq4uPQ/dvZfc38q4u3v4TKS6+4BPSjpZ0nYRsXAJ7X8XES9HxDPA00Dt085jETE9p6dRvBgAzgUOUDFS8eco/gmbtS1weUS8GBEvAJcB2wFr5ifJTYEFETGbIonsDNwD3E3xBjYm1/NERNyR0zsBP4uIlwAiYn6Wb5yffO8D9qV48we4DZgk6WCKf+De+gRwaR6v8vaQtBpFYro5iy6gSHw92R74ea7rXoo3c/L43AB8Jj+9LxsR91WIF2BqRDwZRffJdN58LmtxD8u4b8mi8tnVtqX4HgKeADbMuhsjYlFEzKNIIr/N8vuA0ZJWBrYBLpU0HTgLWLvJmLejeK28FBHP89Yv617S3UJ5JnEwcGCpbAxFYvxsRLxat8hOwE8yvquAVTPuVii/bj+r4iz+HorXZqPrIK9QfHiCt/4PtlJ3//dQ/A8+GhGP5fyv6pbt7r2kX/iaSEUR8WdJmwG7AidIup7i00UtMa9Qt8jLpenXePPY15evmNO/AY6leIObFhHP9kHYl1J80vkn3nyDEPCfEXFWuaGk0cCLTaxzErBnRMyQtD/FJ3Ii4lBJWwKfBqZJ2rwP4m9GT89Bd84Fvg08BPxsKbbd3XO8tMrrfb00/3puYwjwXESM66Pt1TR8/iWtDZwH7J5JmEwIk4GDI2Jug8WGUJwd/KOPY2zkxYxpfYqzqo9ExAJJk2j8mng18mM+ffu89aS7//sqy/br+7jPRCqS9B7gpYj4OcWnr80ourNqb5b/sjTrz3+2KcCZ9P6N7VZgT0krSXoX8L+y7BKKoWH2okgo5DYOrH0qlDRS0poN1nkdxZlR7ZrHGlm+CjBX0rIUZyJk/QYRcWcUFwvnUXSdLcr2zbgB2FvSu+u2R571LZC0XRZ9CaidlTzOm8/BXqX13QJ8Ide1MUWXVm19d2Z8X+Dtn/r6TEQ8Bzwnadss2rdUfWttXtKGFF0+TY02nWcQj0naO5dXnm024xaK18qKklah6I7qVj7PlwJHR8SfS1XnU5yp3trNotcCXymtZ1yT8S2NVSkSysK8zjGhDdvsCw8D780PclD0RCxJb/63+pSTSHUfAqbm6fmxFNcDjgN+nBcjX+uDbfyC4tPmtb1ZKCLupjhDmArcCZwbEfdEMSTMKsCc2qfFiLiWoqvsT9kl9WsavBgj4g8U3RBduc+12wz/PbdxG8Un+ZofqrhIfD9FH+4Mius8Y9XEhfWM9UTgZhUXoX9U12RibuNeiru+js/y/wL+j6R7KPqMa84EVpY0M9tOq1vfZOC2iFjQU1x94ADg9DyG5QvvZwBD8jm4BNg/Il5usHx39gUOymP1AE3+rk6+Vi6heH6uoRiPrifbUFxLOq50IX09ioR9YKms/vbprwLjVdwI8SBwaNN7VlFEzKDoxnqI4jV+W6u32Rci4u8Ud1r9QdI0igTRY3d59lTcpuJmlrZeWPewJwOYirunVouIf+/vWN7p8u6XUyLi+v6OxUzSyhHxgiRR/HrrIxHR9F2D7eRrIgOUittQN6C4wGwtkhe7pwIznEBsADlY0kRgOYqzqbOW0L7f+EzEzMwq8zURMzOrzEnEzMwqcxIxM7PKnETMKpB0iqQjS/NTJJ1bmv9vSV/r5Tr3VGlkWfXRSMNmreQkYlbNbRTfmUDSEIrvpGxUqt+G4vsxvbEnjYfl6DVJvvPS2sJJxKya24Gtc3ojihFjF0laXdLywAeBkHRzjsQ6JYcLaTjysaRtgN0pvkA5XdIGue69JU1VMcrudrn8UEk/1JsjL/9rlu+gYhyzqygG2DRrOScRswoi4n+AxZLWpTjr+BPFN/e3pvhG90yKUXb3iojNKYYFOTEXvywiPhIRm2a7gyLidooRAb4REeMi4i/ZdpmI2AI4kmJkBICDgIUR8RHgIxTfKVg/6zYDjoiI2uCNZi3lU16z6m6nSCDbUAzLMjKnFwJzKEZHvq740jFDgdrAhBtLOoHih4RWphi/rDuX5d/ySK87A5sof3uC4mcIxlCMRju1NPqrWcs5iZhVV7su8iGK7qzZFL8L8jzF71WMjIitGyw3iQYjH3ejNn5WebRWUfxuy1uSj6QdaG7kZbM+4+4ss+puBz4DzI+I1/I3T4ZRdGn9ChghaWsoRr+VVLvw3nDkY5ofiXUKxSCTy+a6N8zRms3azknErLr7KO7KuqOubGFEPE0xsu3JObLudPJuLrof+fhi4Bsqfvp2A7p3LsWF87tzlOSzcK+C9ROPnWVmZpX5TMTMzCpzEjEzs8qcRMzMrDInETMzq8xJxMzMKnMSMTOzypxEzMyssv8PEsApz17m8doAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
" \n",
"left = [1, 2, 3, 4, 5, 6, 7]\n",
"\n",
"height = [sunny['attendance'].mean(), overcast['attendance'].mean(), cloudy['attendance'].mean(), \n",
"in_dome['attendance'].mean(), drizzle['attendance'].mean(), rain['attendance'].mean(), night['attendance'].mean()]\n",
"\n",
"tick_label = ['sunny', 'overcast', 'cloudy', 'in dome', 'drizzle', 'rain', 'night']\n",
"\n",
"plt.bar(left, height, tick_label = tick_label,\n",
" width = 0.8, color = ['blue', 'green', 'red'])\n",
" \n",
"plt.xlabel('Weather')\n",
"plt.ylabel('Attendance')\n",
"plt.title('Attendance - Weather')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mediana"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAftUlEQVR4nO3debgdVZnv8e+PMMsQMIHGBAliUAEhQpRBUBREgiLcblAUJQwXmgsqtKJAX20EwQbtFuQKKJMBHCAqQ0Qw5GEWhJAACUNAIoNJGiFACAGU8b1/rHdDcTjnZJ/K2fucTX6f59nPqVprVdVbtffZ765plSICMzOzOpYZ6ADMzKxzOYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImbdkDRKUkhadqBj6QSSHpa040DHYe3nJGKDiqTrJC2QtEKX8jd8SflL/o0kbS1pkaQhlbKzeij7yRIua4Kk45dkHvbW4SRig4akUcB2QACfGdhoOs40yv/z5pWy7YC5Xco+AtzQxrj6xD8KOo+TiA0m+wC3ABOA8Y1CSRcA7wR+J+lZSd/k9S/Cp7Ns62y7v6RZuTczWdJ6lfmEpIMlPSDpaUmnSVLWDZH0X5KekPQg8KlqYJL2y/kukvSgpH+t1G0vaa6kr0t6XNKjkvar1K8k6b8lPSJpoaQ/Slop67aSdHPGM0PS9nU2XES8lNvuIznftYDlgYldyjYEbpC0jKSjJP1F0pOSJkpasxLzryX9LeO9QdLGWX4QsDfwzdzuv6uEMUbSzJzmIkkrVub3aUl35nreLGnTSt3Dko6UNBN4zomkw0SEX34NihcwGzgE2AJ4CVi7UvcwsGNlfBRlj2XZStluOY/3AcsC3wJurtQHcDkwlJKU5gM7Z93BwH3AusCawLXV+VOSygaAgI8CzwObZ932wMvAccBywC5Zv0bWnwZcB4wAhgDbACvk+JPZfhngEzk+vOb2Owa4LIf3AM7PeVbLHszhwyhJZ2TG8lPgV5V57Q+smnWnAHdW6iYAx3dZ9sPAVOAduf1mAQdn3QeAx4Etc/3HZ/sVKtPemdt+pYH+HPrVx8/dQAfgl18RAbBtJo5hOX4f8G+V+maSyJXAAZXxZfLLfL0cD2DbSv1E4KgcvqbxpZfjO3Wdf5d4LwUOy+Htgb93ieVxYKuM4e/AZt3M40jggi5lk4HxNbfh9pmEBPwIOBBYBXisUvazbDsL2KEy7Tq5/d+0vpSkG8DqOd5TEvliZfz7wE9y+Azgu13a3w98tDLt/gP9GfSr3suHs2ywGA9cFRFP5PgvqRzSatJ6wI/ykMnTwFOUL88RlTZ/qww/T/mShfILek6l7pHqjCWNk3SLpKdy3rsAwypNnoyIl7uZ9zBgReAvPcS7ZyPenO+2lC/0N5C0dx4+elbSld2ufdmzWAXYhHII68aIeDbXq1HWOAy4HnBJZbmzgFeAtfPQ3ol5qOsZypc8Xda3Oz1t2/WAr3dZz3Up27yhuu2tg/jYow24PD/wWWCIpMYX0QrAUEmbRcQMyi/hqu66n54DnBARv6gRxqOUL7aGd1biWwH4LeWczWUR8ZKkSykJanGeAP5BORQ2o5t4L4iIAxc3k1ynXtcrIv4h6TZgV2CdiLgvq27Msk15PYnMofz6v6nrfCR9iXJocEdKAlkdWMDr69vXrr8b78sJvYXfx3naIOE9ERsMdqf8Ct4IGJOv91G+/PbJNo8B76pMMx94tUvZT4CjKyeBV5e0Z5MxTAS+KmmkpDWAoyp1y1OS2nzgZUnjKIe7FisiXgXOBX4o6R35K3/rTEw/B3aV9MksXzFP0o9sMubu3EA533FzpeyPWfZoRDT2iH4CnNC48EDScEm7Zd2qwAuUQ2MrA9/rsoyu78XinAUcLGlLFW+T9ClJq/ZlxWxwchKxwWA85Vj9XyPib40X8GNg77xa5z+Bb+XhkCMi4nngBOCmLNsqIi4BTgIuzMMwdwPjmozhLMr5iBnA7cDFjYqIWAR8lZJoFgBfACb1Yf2OAO4CbqMcYjsJWCYi5lB+8f87JUHNAb7Bkv1fXg+sRUkcDX/MshsrZT+irMNVkhZRDoVtmXXnUw7nzQPuzbqqc4CNcrtfuriAImIa5fzMjynbbzawb19WygYvRXgv0szM6vGeiJmZ1eYkYmZmtTmJmJlZbU4iZmZW21J3n8iwYcNi1KhRAx2GmVnHmD59+hMRMby7uqUuiYwaNYpp06YNdBhmZh1D0iM91flwlpmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdW21N2xbmbWDmrm4clt1KpHR3lPxMzManMSMTOz2pxEzMysNicRMzOrzUnEzMxqcxIxM7PanETMzKw2JxEzM6vNScTMzGpzEjEzs9qcRMzMrLaWJxFJQyTdIenyHF9f0q2SZku6SNLyWb5Cjs/O+lGVeRyd5fdL+mSlfOcsmy3pqFavi5mZvVE79kQOA2ZVxk8CTo6IdwMLgAOy/ABgQZafnO2QtBGwF7AxsDNweiamIcBpwDhgI+Dz2dbMzNqkpUlE0kjgU8DZOS7g48Bvssl5wO45vFuOk/U7ZPvdgAsj4oWIeAiYDXwoX7Mj4sGIeBG4MNuamVmbtHpP5BTgm8CrOf524OmIeDnH5wIjcngEMAcg6xdm+9fKu0zTU/mbSDpI0jRJ0+bPn7+Eq2RmZg0tSyKSPg08HhHTW7WMZkXEmRExNiLGDh8+fKDDMTN7y2jlQ6k+DHxG0i7AisBqwI+AoZKWzb2NkcC8bD8PWBeYK2lZYHXgyUp5Q3WansrNzKwNWrYnEhFHR8TIiBhFOTF+TUTsDVwL7JHNxgOX5fCkHCfrr4mIyPK98uqt9YHRwFTgNmB0Xu21fC5jUqvWx8zM3mwgHo97JHChpOOBO4Bzsvwc4AJJs4GnKEmBiLhH0kTgXuBl4NCIeAVA0peBycAQ4NyIuKeta2JmtpRTtOrBu4PU2LFjY9q0aQMdhpm9xb2VnrEuaXpEjO2uznesm5lZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVpuTiJmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVtuyAx2AmbWfjtVAh/AGcUwMdAhWk/dEzMysNu+J9IEG1483wj/ezGyAeU/EzMxqcxIxM7PanETMzKw2JxEzM6vNScTMzGpzEjEzs9qcRMzMrDYnETMzq81JxMzManMSMTOz2pxEzMysNvedZYOLOygz6yjeEzEzs9qcRMzMrLaWJRFJK0qaKmmGpHskHZvl60u6VdJsSRdJWj7LV8jx2Vk/qjKvo7P8fkmfrJTvnGWzJR3VqnUxM7PutXJP5AXg4xGxGTAG2FnSVsBJwMkR8W5gAXBAtj8AWJDlJ2c7JG0E7AVsDOwMnC5piKQhwGnAOGAj4PPZ1szM2qRlSSSKZ3N0uXwF8HHgN1l+HrB7Du+W42T9DpKU5RdGxAsR8RAwG/hQvmZHxIMR8SJwYbY1M7M2aek5kdxjuBN4HJgC/AV4OiJeziZzgRE5PAKYA5D1C4G3V8u7TNNTeXdxHCRpmqRp8+fP74c1MzMzaHESiYhXImIMMJKy5/DeVi6vlzjOjIixETF2+PDhAxGCmdlbUluuzoqIp4Frga2BoZIa96eMBObl8DxgXYCsXx14slreZZqeys3MrE1aeXXWcElDc3gl4BPALEoy2SObjQcuy+FJOU7WXxMRkeV75dVb6wOjganAbcDovNprecrJ90mtWh8zM3uzVt6xvg5wXl5FtQwwMSIul3QvcKGk44E7gHOy/TnABZJmA09RkgIRcY+kicC9wMvAoRHxCoCkLwOTgSHAuRFxTwvXx8zMumhZEomImcAHuil/kHJ+pGv5P4A9e5jXCcAJ3ZRfAVyxxMGamVktvmPdzMxqcxIxM7PanETMzKw2JxEzM6ttsUlE0oaSrpZ0d45vKulbrQ/NzMwGu2b2RM4CjgZegteuutqrlUGZmVlnaCaJrBwRU7uUvdxtSzMzW6o0c5/IE5I2oPTAi6Q9gEdbGpX1Gx07eB43G8f4UbNmbzXNJJFDgTOB90qaBzwEfLGlUZmZWUdYbBLJO8x3lPQ2YJmIWNT6sMzMrBM0c3XW9yQNjYjnImKRpDWy3yszM1vKNXNifVx25Q5ARCwAdmlZRGZm1jGaSSJDJK3QGMlu3Vfopb2ZmS0lmjmx/gvgakk/y/H9eP1Z6GZmthRr5sT6SZJmAjtk0XcjYnJrwzIzs07Q1PNEIuJK4MoWx2JmZh2mmauz/lnSA5IWSnpG0iJJz7QjODMzG9ya2RP5PrBrRMxqdTBmZtZZmrk66zEnEDMz604zeyLTJF0EXAq80CiMiItbFZSZmXWGZpLIasDzwE6VsgCcRMysfTR4OhMl3JloQzOX+O7XjkDMzKzzLDaJSFoROADYGFixUR4R+7cwLjMz6wDNnFi/APgn4JPA9cBIwD35miVpcL3M2qmZJPLuiPg28FxEnAd8CtiytWGZmVknaCaJvJR/n5a0CbA6sFbrQjIzs07RzNVZZ0paA/g2MAlYBfiPlkZlZmYdoZmrs87OweuBd7U2HDMz6yQ9JhFJX+ttwoj4Yf+HY2ZmnaS3PZFV8+97gA9SDmUB7ApMbWVQZmbWGXpMIhFxLICkG4DNI2JRjn8H+H1bojMzs0Gtmauz1gZerIy/mGVmZraUa+bqrPOBqZIuyfHd8eNxzcyM5q7OOkHSH4Bts2i/iLijtWGZmVknaOrxuMCdwKON9pLeGRF/bVVQZmbWGZrpgPErwDHAY8ArgChdwW/a2tDMzGywa2ZP5DDgPRHxZKuDMTOzztLM1VlzgIWtDsTMzDpPM3siDwLXSfo9b3w8ru9YNzNbyjWzJ/JXYAqwPOUu9sarV5LWlXStpHsl3SPpsCxfU9IUSQ/k3zWyXJJOlTRb0kxJm1fmNT7bPyBpfKV8C0l35TSnSn6agplZOzVziW/jzvWVI+L5Psz7ZeDrEXG7pFWB6ZKmAPsCV0fEiZKOAo4CjgTGAaPztSVwBrClpDUpJ/bHUk7oT5c0KSIWZJsDgVuBK4CdgSv7EKOZmS2Bxe6JSNpa0r3AfTm+maTTFzddRDwaEbfn8CJgFjAC2I3Xb1Y8j3LzIll+fhS3AEMlrUN5ouKUiHgqE8cUYOesWy0ibomIoNwU2ZiXmZm1QTOHs06hfJE/CRARM4CP9GUhkkYBH6DsMawdEY9m1d94vQuVEZST+A1zs6y38rndlHe3/IMkTZM0bf78+X0J3czMetFMEiEi5nQpeqXZBUhaBfgtcHhEPNNlvkE5RNVSEXFmRIyNiLHDhw9v9eLMzJYaTV3iK2kbICQtJ+kIyqGpxZK0HCWB/CIiLs7ix/JQFPn38SyfB6xbmXxklvVWPrKbcjMza5NmksjBwKGUQ0XzgDHAIYubKK+UOgeY1eVy4ElA4wqr8cBllfJ98iqtrYCFedhrMrCTpDXySq6dgMlZ94ykrXJZ+1TmZWZmbdDMfSLviYi9qwWSPgzctJjpPgx8CbhL0p1Z9u/AicBESQcAjwCfzborgF2A2cDzwH4AEfGUpO8Ct2W74yLiqRw+BJgArES5KstXZpmZtVEzSeT/AZs3UfYGEfFHSj9b3dmhm/ZB2ePpbl7nAud2Uz4N2KS3OMzMrHV6e8b61sA2wPAuz1tfDRjS6sDMzGzw621PZHlglWxTvUP9GWCPVgZlZmadobdnrF8PXC/p7xHx/WqdpD2BB1odnJmZDW7NXJ21VzdlR/d3IGZm1nl6OycyjnK11AhJp1aqVgVeanVgZmY2+PV2TuR/gOnAZ/Jvw3qUS3DNzGwp1+PhrIiYERETgHcDMymX0h4LfIwm71g3M7O3tt4OZ20IfD5fTwAXAYqIj7UpNjMzG+R6O5x1H3Aj8OmImA0g6d/aEpWZmXWE3q7O+mfgUeBaSWdJ2oGe70A3M7OlUG/nRC6NiL2A9wLXAocDa0k6Q9JObYrPzMwGscXeJxIRz0XELyNiV0p363dQHmdrZmZLuaYeStUQEQvyAU9v6kDRzMyWPn1KImZmZlVOImZmVpuTiJmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVpuTiJmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVlvLkoikcyU9LunuStmakqZIeiD/rpHlknSqpNmSZkravDLN+Gz/gKTxlfItJN2V05wqSa1aFzMz614r90QmADt3KTsKuDoiRgNX5zjAOGB0vg4CzoCSdIBjgC2BDwHHNBJPtjmwMl3XZZmZWYu1LIlExA3AU12KdwPOy+HzgN0r5edHcQswVNI6wCeBKRHxVEQsAKYAO2fdahFxS0QEcH5lXmZm1ibtPieydkQ8msN/A9bO4RHAnEq7uVnWW/ncbsq7JekgSdMkTZs/f/6SrYGZmb1mwE6s5x5EtGlZZ0bE2IgYO3z48HYs0sxsqdDuJPJYHooi/z6e5fOAdSvtRmZZb+Ujuyk3M7M2ancSmQQ0rrAaD1xWKd8nr9LaCliYh70mAztJWiNPqO8ETM66ZyRtlVdl7VOZl5mZtcmyrZqxpF8B2wPDJM2lXGV1IjBR0gHAI8Bns/kVwC7AbOB5YD+AiHhK0neB27LdcRHROFl/COUKsJWAK/NlZmZt1LIkEhGf76Fqh27aBnBoD/M5Fzi3m/JpwCZLEqOZmS0Z37FuZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVpuTiJmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVpuTiJmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVpuTiJmZ1eYkYmZmtTmJmJlZbU4iZmZWm5OImZnV5iRiZma1OYmYmVltTiJmZlZbxycRSTtLul/SbElHDXQ8ZmZLk45OIpKGAKcB44CNgM9L2mhgozIzW3p0dBIBPgTMjogHI+JF4EJgtwGOycxsqbHsQAewhEYAcyrjc4EtuzaSdBBwUI4+K+n+NsTWm2HAE0s6E6kfImlO/8T7nfYFTD/F3M6NTOd9LqDzPhv+XNSzXk8VnZ5EmhIRZwJnDnQcDZKmRcTYgY6jWZ0WLzjmdum0mDstXhj8MXf64ax5wLqV8ZFZZmZmbdDpSeQ2YLSk9SUtD+wFTBrgmMzMlhodfTgrIl6W9GVgMjAEODci7hngsJoxaA6tNanT4gXH3C6dFnOnxQuDPGZFxEDHYGZmHarTD2eZmdkAchIxM7PanESsbSSNkbTLEkz/HUlH9FMs10la4ssmJd28BNOOknT3ksbQn3raxpIOlrRPH+e1r6Qf9190/UfS2YOtdwtJx0nacTFtenp/hko6pHXR9ayjT6xbe0gS5fzZq0s4qzHAWOCKJQ5qkIiIbQY6hlaTtGxE/GSg4+ir3j63EfG/ByCkXkXEfyzB5EOBQ4DT+yea5nlPpCZJb5P0e0kzJN0t6XOSHpY0LOvHSrouh78j6dz89fugpK9m+ShJsySdJekeSVdJWknSBpJuryxrdHW8yfi+lnHdLelwSSdKOrRS/9ovGknfkHSbpJmSjq3Edr+k84G7gXUlHSnprlznE7PdgTntDEm/lbRylu+Zy54h6Ya8BPs44HOS7pT0uSbWYZ+MaYakC7rUjZF0S9ZfImmNLH9tD0PSMEkP5/BKki7M7X0JsFKW7y/plMp8D5R0ch+287P5d/tc9m8k3SfpF/kl1rX9Frk+M4Dq+7GipJ/l9r1D0seyfF9Jl0qakp+vL+d7e0eu/5rZbgNJf5A0XdKNkt7bh3X4v5L+LOmPwHsq2/EUSdOAwxqfF0nvyPev8XpF0npdyv4u6aNdljE8Px+35evDzcbXF918bs+RNC3/v46ttKt+Tp6VdEK+L7dIWrsVsXWJsbv/+wmS9sg2u+TnaLqkUyVdXpnFRuryXQKcCGyQ2/8HrYz/TSLCrxov4F+AsyrjqwMPA8NyfCxwXQ5/B7gZWIHShcGTwHLAKOBlYEy2mwh8MYevrZR/D/hKH2LbArgLeBuwCnAP8AHg+kqbeyk3au5EuYRQlB8VlwMfydheBbbK9uNyHVbO8TXz79sr8zy+EWcuf0QOD82/+wI/bnIdNgb+XNmea+Z2PCLHZwIfzeHjgFNy+DpgbA4PAx7O4a9RLgEH2DS3+9jcPn8Blsu6m4H392FbP5t/twcWUm54XQb4E7BtN+1nAh/J4R8Ad+fw1yvxvRf4K7BibrPZwKrA8FzGwdnuZODwHL4aGJ3DWwLX9PGzsjKwWi7riNyOp1favbbtK2WHAhO7lO0K3Ej5fL/2fgO/bGwP4J3ArBb9X47ijZ/bxud0SK7Tpt18TgLYNYe/D3yrFbF1ifFN//fABGCPfN/nAOtn/a+AyyvvQ0/fJXe3Mu6eXt4Tqe8u4BOSTpK0XUQsXEz730fECxHxBPA40Pi181BE3JnD0ykfBoCzgf1Ueir+HOWfsFnbApdExHMR8SxwMbAdsFb+ktwMWBARcyhJZCfgDuB2yhfY6JzPIxFxSw7vCPwsIp4HiIinsnyT/OV7F7A35csf4CZggqQDKf/AffVx4Ne5varLQ9LqlMR0fRadR0l8vfkI8POc10zKlzm5fa4BPp2/3peLiLtqxAswNSLmRjl8cievv5eNuIdm3DdkUXXvattKfPcBjwAbZt21EbEoIuZTksjvsvwuYJSkVYBtgF9LuhP4KbBOkzFvR/msPB8Rz/DGm3Uv6mmi3JM4ENi/Ujaakhg/GxEvdZlkR+DHGd8kYLWMuxWqn9vPquzF30H5bHZ3HuRFyo8neOP/YCv19H8P5X/wwYh4KMd/1WXanr5LBoTPidQUEX+WtDmwC3C8pKspvy4aiXnFLpO8UBl+hde3fdfylXL4t8AxlC+46RHxZD+E/WvKL51/4vUvCAH/GRE/rTaUNAp4rol5TgB2j4gZkval/CInIg6WtCXwKWC6pC36If5m9PYe9ORs4N+B+4CfLcGye3qPl1R1vq9Wxl/NZSwDPB0RY/ppeQ3dvv+S1gHOAT6TSZhMCBOBAyPi0W4mW4ayd/CPfo6xO89lTOtT9qo+GBELJE2g+8/ES5E/8+nf9603Pf3f15l2QL/HvSdSk6R3AM9HxM8pv742pxzOanxZ/suSzD//2SYDZ9D3L7Ybgd0lrSzpbcD/yrKLKF3D7EFJKOQy9m/8KpQ0QtJa3cxzCmXPqHHOY80sXxV4VNJylD0Rsn6DiLg1ysnC+ZRDZ4uyfTOuAfaU9PYuyyP3+hZI2i6LvgQ09koe5vX3YI/K/G4AvpDz2oRySKsxv1szvi/w5l99/SYingaelrRtFu1dqb6xMS5pQ8ohn6Z6m849iIck7ZnTK/c2m3ED5bOykqRVKYejepTv86+BIyPiz5Wqcyl7qjf2MOlVwFcq8xnTZHxLYjVKQlmY5znGtWGZ/eF+4F35Qw7KkYjF6cv/Vr9yEqnv/cDU3D0/hnI+4FjgR3ky8pV+WMYvKL82r+rLRBFxO2UPYSpwK3B2RNwRpUuYVYF5jV+LEXEV5VDZn/KQ1G/o5sMYEX+gHIaYluvcuMzw27mMmyi/5Bt+oHKS+G7KMdwZlPM8G6mJE+sZ6wnA9SonoX/Ypcn4XMZMylVfx2X5fwH/R9IdlGPGDWcAq0ialW2nd5nfROCmiFjQW1z9YD/gtNyG1RPvpwPL5HtwEbBvRLzQzfQ92Rs4ILfVPTT5XJ38rFxEeX+upPRH15ttKOeSjq2cSF+PkrD3r5R1vXz6q8BYlQsh7gUObnrNaoqIGZTDWPdRPuM3tXqZ/SEi/k650uoPkqZTEkSvh8vzSMVNKheztPXEurs9GcRUrp5aPSK+PdCxvNXl1S8nR8TVAx2LmaRVIuJZSaI8vfWBiGj6qsF28jmRQUrlMtQNKCeYrUXyZPdUYIYTiA0iB0oaDyxP2Zv66WLaDxjviZiZWW0+J2JmZrU5iZiZWW1OImZmVpuTiFkNkk6WdHhlfLKksyvj/y3pa32c5+6q9Cyrfupp2KyVnETM6rmJcs8Ekpah3JOycaV+G8r9MX2xO913y9FnknzlpbWFk4hZPTcDW+fwxpQeYxdJWkPSCsD7gJB0ffbEOjm7C+m252NJ2wCfodxAeaekDXLee0qaqtLL7nY5/RBJP9DrPS//a5Zvr9KP2SRKB5tmLeckYlZDRPwP8LKkd1L2Ov5EuXN/a8od3bMovezuERFbULoFOSEnvzgiPhgRm2W7AyLiZkqPAN+IiDER8Zdsu2xEfAg4nNIzAsABwMKI+CDwQco9Betn3ebAYRHR6LzRrKW8y2tW382UBLINpVuWETm8EJhH6R15SrnpmCFAo2PCTSQdT3mQ0CqU/st6cnH+rfb0uhOwqfLZE5THEIym9EY7tdL7q1nLOYmY1dc4L/J+yuGsOZTngjxDeV7FiIjYupvpJtBNz8c9aPSfVe2tVZTntrwh+UjanuZ6XjbrNz6cZVbfzcCngaci4pV85slQyiGtXwHDJW0NpfdbSY0T7932fEzzPbFOpnQyuVzOe8Psrdms7ZxEzOq7i3JV1i1dyhZGxOOUnm1Pyp517ySv5qLnno8vBL6h8ujbDejZ2ZQT57dnL8k/xUcVbIC47ywzM6vNeyJmZlabk4iZmdXmJGJmZrU5iZiZWW1OImZmVpuTiJmZ1eYkYmZmtf1/P6UrTzMrQVIAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
" \n",
"left = [1, 2, 3, 4, 5, 6, 7]\n",
"\n",
"height = [sunny['attendance'].median(), overcast['attendance'].median(), cloudy['attendance'].median(), \n",
"in_dome['attendance'].median(), drizzle['attendance'].median(), rain['attendance'].median(), night['attendance'].median()]\n",
"\n",
"tick_label = ['sunny', 'overcast', 'cloudy', 'in dome', 'drizzle', 'rain', 'night']\n",
"\n",
"plt.bar(left, height, tick_label = tick_label,\n",
" width = 0.8, color = ['blue', 'green', 'red'])\n",
" \n",
"plt.xlabel('Weather')\n",
"plt.ylabel('Attendance')\n",
"plt.title('Attendance - Weather')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W nocy prawdopodobnie najwięcej, gdyż większa grupa odbiorców ma dostęp do meczy online z całego świata. \n",
"Pod kopułą może być najmniej widzów, gdyż takie stadiony mają mniejsze trybuny."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Dzień tygodnia\n",
"\n",
"![image2](week.jpg)"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Sunday', 'Wednesday', 'Tuesday', 'Monday', 'Thursday', 'Saturday',\n",
" 'Friday'], dtype=object)"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['day_of_week'].unique()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"monday = data[data['day_of_week'] == 'Monday']\n",
"tuesday = data[data['day_of_week'] == 'Tuesday']\n",
"wednesday = data[data['day_of_week'] == 'Wednesday']\n",
"thursday = data[data['day_of_week'] == 'Thursday']\n",
"friday = data[data['day_of_week'] == 'Friday']\n",
"saturday = data[data['day_of_week'] == 'Saturday']\n",
"sunday = data[data['day_of_week'] == 'Sunday']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Średnia ilość kibiców w danym dniu"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiEklEQVR4nO3de7gWdb338fdHxFNy8LDkcQOKKWmoSbby0LYyNQSrDfVYYSrk4yO5xc71qNUOTW13uMo2lroxSfCEbi0lxZALz6UCKnLwECs0gVBQTiqKot/nj99v5bhca3EzcN9rLdbndV33teb+zsxvvjMM9/f+zcw9o4jAzMysjK3aOgEzM+u4XETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXEbNOQlI/SSFp67bOxbYcLiK2xZP0jKRXJb0kaZWkv0g6XVLN939J50i6vUlsQQux4Zu4rGckHbMpbZhtiIuIdRafiYhuwJ7AT4CzgCvaII97gY9I6gIgaXegK/DBJrF98rTtknsz1shFxDqViFgdEZOBLwIjJR0AIOlTkh6VtEbSIknnNs4j6TZJXy22I2mOpM+WSGEmqWgMzO8/CtwFPNUk9reI+IekHpKukLRU0hJJFxSKzd6S7pT0oqQXJF0jqWcedxWwB/BHSS9L+n+FHE6U9Gye5/uFddpK0tmS/pbbvEHSznlc46GwUyU9C9xZYt1tC+QiYp1SRMwAFpM+sAFeAUYAPYFPAf8uaVgeNwE4qXFeSQcBvYHbSiz3deAh4GM59DHgPuD+JrHGXsiVwHpSz+SDwCDg/zamAvwn8C/A+4G+wLl5OScDz5J6YDtGxM8KaRwB7AscDfxQ0vtz/KvAMODjuc2VwG+arMLH87KO3dh1ty2Ti4h1Zv8AdgaIiLsjYm5EvBURc4DrSB+YAJOB90nqn9+fDFyfC0IZ9/B2wfgoqYjc1yR2j6RewHHANyLilYhYBlwEDM85N0TEtIhYFxHLgV8Wcm7NeRHxakQ8BjwGHJTjpwPfj4jFEbGOVJCOb3Lo6tycy6vlVt22NC4i1pn1BlYASDpU0l2SlktaTfpA3RUgIl4DrgdOyifjTwCuaq5BSZflw0cvS/peC8u9FzgiHyqqi4gFwF9I50p2Bg7I0+xJOvS1NF8QsAr4b2C3vKxekiblw1xrgKsbc96A5wrDa4Ed8/CewB8Ky3oCeBPoVZh+UQXtWyfiImKdkqQPk4rI/Tl0LanH0TciegCXkQ4XNZoAnEg6BLQ2Ih5ort2IOD0fPtoxIn7cwuIfAHoApwF/zvOtIfWMTgP+ERFPkz6w1wG7RkTP/OoeEfvndn4MBHBgRHQnHXIr5ryxt+heBAwpLKtnRGwXEUs2oU3bwrmIWKciqbukTwOTgKsjYm4e1Q1YERGvSToE+FJxvlw03gJ+QQu9kErlQ0GzgG+RDmM1uj/H7s3TLQXuAH6R894qn0xvPGTVDXgZWC2pN/DdJot6HnjvRqR2GXChpD0BJNVJGrpxa2edjYuIdRZ/lPQS6dv290nnD04pjD8D+FGe5ofADc20MRE4kHTYaFPdQzosdX8hdl+OFS/tHQFsAzxOOtF9I7B7HncecDCwmnSS//dNlvGfwA/y4anvVJDTf5F6Y3fk7fAgcOhGrJN1QvJDqcwqI2kEMCoijmjrXMzaC/dEzCogaQdSb2VcW+di1p64iJhtgKRjgeWkcwzXtnE6Zu2KD2eZmVlp7omYmVlpne4marvuumv069evrdMwM+tQHn744Rcioq5pvNMVkX79+jFr1qy2TsPMrEOR9Pfm4j6cZWZmpbmImJlZaS4iZmZWmouImZmVVrUiImk7STMkPSZpvqTzcvxKSU9Lmp1fA3NcksZKashPjTu40NbI/MzpBZJGFuIfkjQ3zzNWkt6ViJmZVU01r85aBxwVES9L6grcL+n2PO67EXFjk+mHAP3z61DgUuDQ/HyFMUA96TbUD0uaHBEr8zSnkZ4UNwUYDNyOmZnVRNV6IpG8nN92za/Wfh4/FJiY53sQ6Clpd9JjOKdFxIpcOKYBg/O47hHxYKSf3U8kPdrTzMxqpKrnRCR1kTQbWEYqBA/lURfmQ1YXSdo2x3rzzqemLc6x1uKLm4k3l8coSbMkzVq+fPmmrpaZmWVVLSIR8WZEDAT6AIdIOgA4B9gP+DDp+dZnVTOHnMe4iKiPiPq6unf94NLMzEqqydVZEbEKuAsYHBFL8yGrdcDvgEPyZEuAvoXZ+uRYa/E+zcTNbEskta+XAdW9OqtOUs88vD3wSeDJfC6DfCXVMGBenmUyMCJfpXUYsDo/HnQqMEjSTpJ2AgYBU/O4NZIOy22NAG6p1vqYmdm7VfPqrN2BCZK6kIrVDRFxq6Q7JdUBAmYDp+fppwDHAQ3AWvKjSyNihaTzgZl5uh9FxIo8fAZwJbA96aosX5llZlZDne55IvX19eEbMJp1QO3tEFIn++yU9HBE1DeN+xfrZmZWmouImZmV5iJiZmaluYiYmVlpLiJmZlaai4iZmZXmImJmZqVV88eGZmadVmf5WYt7ImZmVpqLiJmZleYiYmZmpbmImJlZaT6xbtYJ6bz2ddY3xnSumxluSdwTMTOz0lxEzMysNBcRMzMrzUXEzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEqrWhGRtJ2kGZIekzRf0nk5vpekhyQ1SLpe0jY5vm1+35DH9yu0dU6OPyXp2EJ8cI41SDq7WutiZmbNq2ZPZB1wVEQcBAwEBks6DPgpcFFE7AOsBE7N058KrMzxi/J0SBoADAf2BwYDl0jqIqkL8BtgCDAAOCFPa2ZmNVK1IhLJy/lt1/wK4CjgxhyfAAzLw0Pze/L4oyUpxydFxLqIeBpoAA7Jr4aIWBgRrwOT8rRmZlYjVT0nknsMs4FlwDTgb8CqiFifJ1kM9M7DvYFFAHn8amCXYrzJPC3Fm8tjlKRZkmYtX758M6yZmZlBlYtIRLwZEQOBPqSew37VXF4reYyLiPqIqK+rq2uLFMzMtkg1uTorIlYBdwGHAz0lNd49uA+wJA8vAfoC5PE9gBeL8SbztBQ3M7MaqebVWXWSeubh7YFPAk+QisnxebKRwC15eHJ+Tx5/Z0REjg/PV2/tBfQHZgAzgf75aq9tSCffJ1drfczM7N2q+TyR3YEJ+SqqrYAbIuJWSY8DkyRdADwKXJGnvwK4SlIDsIJUFIiI+ZJuAB4H1gOjI+JNAElnAlOBLsD4iJhfxfUxM7MmqlZEImIO8MFm4gtJ50eaxl8DPt9CWxcCFzYTnwJM2eRkzcysFP9i3czMSnMRMTOz0lxEzMystGqeWDfrFKS2zuCdIto6A+tM3BMxM7PS3BPZCP7GaWb2Tu6JmJlZaS4iZmZWmouImZmV5nMi1r74xJNZh+KeiJmZleaeyBZO57Wfb/Yxxt/qzbY07omYmVlpLiJmZlaai4iZmZXmImJmZqW5iJiZWWkuImZmVpqLiJmZleYiYmZmpbmImJlZaVUrIpL6SrpL0uOS5kv6eo6fK2mJpNn5dVxhnnMkNUh6StKxhfjgHGuQdHYhvpekh3L8eknbVGt9zMzs3arZE1kPfDsiBgCHAaMlDcjjLoqIgfk1BSCPGw7sDwwGLpHURVIX4DfAEGAAcEKhnZ/mtvYBVgKnVnF9zMysiaoVkYhYGhGP5OGXgCeA3q3MMhSYFBHrIuJpoAE4JL8aImJhRLwOTAKGShJwFHBjnn8CMKwqK2NmZs2qyTkRSf2ADwIP5dCZkuZIGi9ppxzrDSwqzLY4x1qK7wKsioj1TeLNLX+UpFmSZi1fvnxzrJKZmVGDIiJpR+Am4BsRsQa4FNgbGAgsBX5R7RwiYlxE1EdEfV1dXbUXZ2bWaVT1VvCSupIKyDUR8XuAiHi+MP5y4Nb8dgnQtzB7nxyjhfiLQE9JW+feSHF6MzOrgWpenSXgCuCJiPhlIb57YbLPAvPy8GRguKRtJe0F9AdmADOB/vlKrG1IJ98nR0QAdwHH5/lHArdUa33MzOzdqtkT+VfgZGCupNk59j3S1VUDgQCeAb4CEBHzJd0APE66smt0RLwJIOlMYCrQBRgfEfNze2cBkyRdADxKKlpmZlYjVSsiEXE/0Nxj9aa0Ms+FwIXNxKc0N19ELCRdvWVmZm3Av1g3M7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSnMRMTOz0jZYRCS9T9J0SfPy+w9I+kH1UzMzs/aukp7I5cA5wBsAETGHdBNEMzPr5CopIjtExIwmsfXNTmlmZp1KJUXkBUl7k+66i6TjSQ+TMjOzTq6Su/iOBsYB+0laAjwNnFTVrMzMrEPYYBHJt1s/RtJ7gK0i4qXqp2VmZh1BJVdn/VhSz4h4JSJekrRTfgiUmZl1cpWcExkSEasa30TESuC4qmVkZmYdRiVFpIukbRvfSNoe2LaV6c3MrJOo5MT6NcB0Sb/L708BJlQvJTMz6ygqObH+U0lzgKNz6PyImFrdtMzMrCOopCdCRNwO3F7lXMzMrIOp5Oqsz0laIGm1pDWSXpK0poL5+kq6S9LjkuZL+nqO7yxpWm5zmqSdclySxkpqkDRH0sGFtkbm6RdIGlmIf0jS3DzPWEkqtxnMzKyMSk6s/wz4t4joERHdI6JbRHSvYL71wLcjYgBwGDBa0gDgbGB6RPQHpuf3AEOA/vk1CrgUUtEBxgCHAocAYxoLT57mtMJ8gyvIy8zMNpNKisjzEfHExjYcEUsj4pE8/BLwBNAbGMrbJ+YnAMPy8FBgYiQPAj0l7Q4cC0yLiBX58uJpwOA8rntEPBgRAUwstGVmZjVQyTmRWZKuB24G1jUGI+L3lS5EUj/gg8BDQK+IaLz31nNArzzcG1hUmG1xjrUWX9xMvLnljyL1bthjjz0qTdvMzDagkiLSHVgLDCrEAqioiEjaEbgJ+EZErCmetoiIkBSVp1tORIwj3f+L+vr6qi/PzKyzqOQS31PKNi6pK6mAXFPouTwvafeIWJoPSS3L8SVA38LsfXJsCXBkk/jdOd6nmenNzKxGKrk6aztJoyVdIml846uC+QRcATwREb8sjJoMNF5hNRK4pRAfka/SOgxYnQ97TQUG5Xt27UTqEU3N49ZIOiwva0ShLTMzq4FKTqxfBfwv0gnue0jf+Cu5k++/AicDR0manV/HAT8BPilpAXBMfg8wBVgINJCepngGQESsAM4HZubXj3KMPM1v8zx/w79lMTOrqUrOiewTEZ+XNDQiJki6FrhvQzNFxP1AS7/bOLppIF9hNbqFtsYD7+r9RMQs4IAN5WJmZtVRSU/kjfx3laQDgB7AbtVLyczMOopKeiLj8rmI/yCdt9gR+GFVszIzsw6hkquzfpsH7wHeW910zMysI2mxiEj6VmszNrniyszMOqHWeiLd8t99gQ+TDmUBfAaYUc2kzMysY2ixiETEeQCS7gUOzve/QtK5wG01yc7MzNq1Sq7O6gW8Xnj/Om/f78rMzDqxSq7OmgjMkPSH/H4YfjyumZlR2dVZF0r6E3BEDp0SEY9WNy0zM+sIKno8LjAbWNo4vaQ9IuLZaiVlZmYdwwaLiKSvkp4s+DzwJulWJgF8oLqpmZlZe1dJT+TrwL4R8WK1kzEzs46lkquzFgGrq52ImZl1PJX0RBYCd0u6jXc+Hte/WDcz6+QqKSLP5tc2+WVmZgZUdolv4y/Xd4iItdVPyczMOopKHo97uKTHgSfz+4MkXVL1zMzMrN2r5MT6r0iPxn0RICIeAz5WxZzMzKyDqKSIEBGLmoTerEIuZmbWwVRyYn2RpI8AIakr6XcjT1Q3LTMz6wgq6YmcDowGegNLgIHAGRuaSdJ4ScskzSvEzpW0RNLs/DquMO4cSQ2SnpJ0bCE+OMcaJJ1diO8l6aEcv16SrxwzM6uxSorIvhFxYkT0iojdIuIk4P0VzHclMLiZ+EURMTC/pgBIGgAMB/bP81wiqYukLsBvgCHAAOCEPC3AT3Nb+wArgVMryMnMzDajSorIxRXG3iEi7gVWVJjHUGBSRKyLiKeBBuCQ/GqIiIUR8TowCRgqScBRwI15/gmkW9SbmVkNtfaM9cOBjwB1TZ633h3osgnLPFPSCGAW8O2IWEk6VPZgYZrFOQbptivF+KHALsCqiFjfzPTNrcsoYBTAHnvssQmpm5lZUWs9kW2AHUmFplvhtQY4vuTyLgX2Jp1XWQr8omQ7GyUixkVEfUTU19XV1WKRZmadQmvPWL8HuEfSqxHxs+I4SZ8HFmzswiLi+UIblwO35rdLgL6FSfvkGC3EXwR6Sto690aK05uZWY1Uck5keDOxc8osTNLuhbefBRqv3JoMDJe0raS9gP7ADGAm0D9fibVNzmVyRARwF2/3iEYCt5TJyczMymvtnMgQ4Digt6SxhVHdgDc21LCk64AjgV0lLSY92OpISQNJD7V6BvgKQETMl3QD8DiwHhgdEW/mds4EppLOw4yPiPl5EWcBkyRdADwKXFHZKpuZ2ebS2o8N/wE8DPxb/ttoT2CDN2KMiBOaCbf4QR8RFwIXNhOfAkxpJr6QdPWWmZm1kRYPZ0XEYxFxJbAPMAc4ADgP+AT+xbqZmdH64az3ASfk1wvA9YAi4hM1ys3MzNq51g5nPQncB3w6IhoAJH2zJlmZmVmH0NrVWZ8j/ZbjLkmXSzoaUG3SMjOzjqC1cyI3R8RwYD/S5bTfAHaTdKmkQTXKz8zM2rEN/k4kIl6JiGsj4jOkH/U9Srq81szMOrmKHkrVKCJW5luIHF2thMzMrOPYqCJiZmZW5CJiZmaluYiYmVlpLiJmZlaai4iZmZXmImJmZqW5iJiZWWkuImZmVpqLiJmZleYiYmZmpbmImJlZaS4iZmZWmouImZmV5iJiZmalVa2ISBovaZmkeYXYzpKmSVqQ/+6U45I0VlKDpDmSDi7MMzJPv0DSyEL8Q5Lm5nnGSvJTF83MaqyaPZErgcFNYmcD0yOiPzA9vwcYAvTPr1HApZCKDjAGOBQ4BBjTWHjyNKcV5mu6LDMzq7KqFZGIuBdY0SQ8FJiQhycAwwrxiZE8CPSUtDtwLDAtIlZExEpgGjA4j+seEQ9GRAATC22ZmVmN1PqcSK+IWJqHnwN65eHewKLCdItzrLX44mbizZI0StIsSbOWL1++aWtgZmb/1GYn1nMPImq0rHERUR8R9XV1dbVYpJlZp1DrIvJ8PhRF/rssx5cAfQvT9cmx1uJ9mombmVkN1bqITAYar7AaCdxSiI/IV2kdBqzOh72mAoMk7ZRPqA8CpuZxayQdlq/KGlFoy8zMamTrajUs6TrgSGBXSYtJV1n9BLhB0qnA34Ev5MmnAMcBDcBa4BSAiFgh6XxgZp7uRxHReLL+DNIVYNsDt+eXmZnVUNWKSESc0MKoo5uZNoDRLbQzHhjfTHwWcMCm5GhmZpvGv1g3M7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSnMRMTOz0lxEzMysNBcRMzMrzUXEzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSnMRMTOz0tqkiEh6RtJcSbMlzcqxnSVNk7Qg/90pxyVprKQGSXMkHVxoZ2SefoGkkW2xLmZmnVlb9kQ+EREDI6I+vz8bmB4R/YHp+T3AEKB/fo0CLoVUdIAxwKHAIcCYxsJjZma10Z4OZw0FJuThCcCwQnxiJA8CPSXtDhwLTIuIFRGxEpgGDK5xzmZmnVpbFZEA7pD0sKRROdYrIpbm4eeAXnm4N7CoMO/iHGsp/i6SRkmaJWnW8uXLN9c6mJl1elu30XKPiIglknYDpkl6sjgyIkJSbK6FRcQ4YBxAfX39ZmvXzKyza5OeSEQsyX+XAX8gndN4Ph+mIv9dlidfAvQtzN4nx1qKm5lZjdS8iEh6j6RujcPAIGAeMBlovMJqJHBLHp4MjMhXaR0GrM6HvaYCgyTtlE+oD8oxMzOrkbY4nNUL+IOkxuVfGxF/kjQTuEHSqcDfgS/k6acAxwENwFrgFICIWCHpfGBmnu5HEbGidqthZmY1LyIRsRA4qJn4i8DRzcQDGN1CW+OB8Zs7RzMzq0x7usTXzMw6GBcRMzMrzUXEzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSnMRMTOz0lxEzMysNBcRMzMrzUXEzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrLQOX0QkDZb0lKQGSWe3dT5mZp1Jhy4ikroAvwGGAAOAEyQNaNuszMw6jw5dRIBDgIaIWBgRrwOTgKFtnJOZWaexdVsnsIl6A4sK7xcDhzadSNIoYFR++7Kkp2qQW2t2BV7Y1EakzZBJ5TY5Z51b04Q3yzau8UbulPsFeN/YgPayX+zZXLCjF5GKRMQ4YFxb59FI0qyIqG/rPDZGR8u5o+ULzrlWOlrO7T3fjn44awnQt/C+T46ZmVkNdPQiMhPoL2kvSdsAw4HJbZyTmVmn0aEPZ0XEeklnAlOBLsD4iJjfxmlVot0cWtsIHS3njpYvOOda6Wg5t+t8FRFtnYOZmXVQHf1wlpmZtSEXETMzK81FpB2RdK6k72ymtnpKOmNztNXKMp6RtGs1l9FkeUdKurWK7feTNK+C6f65baudU2GZm23faGUZX5P0hKRrmsTrJY1tYZ6a7gMtkfRlSf+yGdppF+vTmlrsCxvDRWTL1ROoahHpxHqymbatpPZ0ccsZwCcj4sTGgKStI2JWRHytDfOqxJeBjSoi7Wzbd1guIhXK31KflHSlpL9KukbSMZL+LGmBpEMk7SzpZklzJD0o6QN53nMljZd0t6SFkr5WaPf7ub37gX0L8dMkzZT0mKSbJO0gqZukpyV1zdN0L75v4ifA3pJm53ZuLbT9a0lfzsMfknSPpIclTZW0e45/TdLjeV0m5dguku6QNF/SbwEV2rw5tzE/3yEASf9H0q/y8HclXSfpovy6M8ePyttykKQHJD0i6X8k7ZjHD87b/RHgc4XltbZNT5I0I6/7f0vqkl9XSponaa6kbxbW/zFJjwGjm/x735fzeUTSR3J8InBV47YFbgL2lHRjzvMaKf02uPitNn+bv7uQ+1WS/gxcJWn/Qr5zJPWv8r7xLpIuA94L3C5pdZP8/tnb2pR9oJD7RRXm9B5Jt+X1nCfpi5J+mNd9nqRxSo4H6oFr8jbcfiO2fVXXp4V1aC23Wn9ObLqI8KuCF9APWA8cSCq+DwPjSTvdUOBm4GJgTJ7+KGB2Hj4X+AuwLekWBi8CXYEPAXOBHYDuQAPwnTzPLoVlXwB8NQ//DhiWh0cBv2gl33l5+Ejg1sK4X5O+uXXNedXl+BdJl0kD/APYNg/3zH/HAj/Mw58CAtg1v985/90emAfsAuwI/C0v5zDSrRsOBO4DZuT4GOAs4F7gPbmNs4AfAtuRbmvTP2/nGxrXo5Vt+n7gj0DXPN0lwIi8racVtkHjOs0BPpaHf17YZjsA2+Xh/sCsPPxx4I68jj2ApcBq0g9dtwIeAI7I0z5T2D71wN2F3B8Gts/vLwZOzMPb5G1YtX2jlX38mbwtm+Z3ZGG7l94H8ri/AAdWmM//Bi4vvO/RuIz8/irgM3n4bqC+6bpUsO2ruj4trENrudX0c2JzvNwT2ThPR8TciHgLmA9Mj/SvNJf0oX0EaccmIu4EdpHUPc97W0Ssi4gXgGVAL+CjwB8iYm1ErOGdP5Q8IH8TngucCOyf478FTsnDp5B2lrL2BQ4ApuVv1T8gfRhC+nC9RtJJpOIJ8DHg6rx+twErC219Tenb/IOkuwj0j4iXgTuBTwMvk/4D/h1YR/qwrc/b4FXSXZj/nPMYSbpPz36kbb4gb+erm+Tf3DY9mvSfbmZu62jSN+yFwHslXSxpMLBGUk9SMbk3t3dVoe2uwOV5+/9Pzo+IuIf0b90FOIFU/GZExOK8X8zO4zdkckS8mocfAL4n6Sxgzxxv632jmF9R6X1A0n6kD9+5FeYwF/ikpJ9K+mhErAY+IemhvO5H8fa6l123aq9Pc+vQmvb4OdEqHxPcOOsKw28V3r9F2pZvVDjvm2x4219J+ibxmNKhpyMBIuLPSodajgS6RMQGTwSTikDxC8N2+a+A+RFxeDPzfIr0H+wzwPclHdhS4zmXY4DDI2Jt7p43LuO3wPeAJ0nfwL5M+rY1B/gEsA/wNKmXcEKTdgduYL2a26YCJkTEOc3keRBwLHA68AXgW620/U3geeAg0rZ7rTDu96RCdwqpp/P5ZvKAd2737XinVxoHIuJaSQ+RtvkUSV9pJS/YvPtGS17Z8CRv24h9oOIPs4j4q6SDgeOACyRNJx1yrI+IRZLO5d3btVFF277a69PCOrSWW1t+TpTinsjmdR/p20DjTvhC/ubQknuBYfkYbjfSB3ajbsDSfBzzxCbzTQSupfUd+KXcBqRv/wMkbZu/fR+d408BdZIOzzl3VTo+vxXQNyLuIh1a6kHqRdwLfClPOwTYKbfTA1iZ/7PtRzp0BUBEPET6Fvcl0iG/7+R27iN9mD9K+qb3r5L2yW2/R9L7SP9J+0naOzf3jiLTgunA8ZJ2y23tLGnPfAx6q4i4idTjOjgiVgGrJB2R5y1u5x7A0ty7OJnU82h0JVBX2LYteYbUK4J0WKNZkt4LLIyIscAtwAeo7r6xKTZ1H7iu0gUpXW21NiKuJh1qPDiPekHpnNnxhcmL+ztUuO2rvT4trEOluRVzbI/7AuCeyOZ2LjBe0hxgLenbaosi4hFJ1wOPkbquMwuj/wN4CFie/xb/g1xDOv7Z4g4cES8qnfSfB9xOOp8wj/St/9E8zetKJyXHSupB2h9+BfwVuDrHBIyNiFWSzgOukzSf1Jt4Ni/uT8Dpkp4gFaYHm6RzAzAQmAZ8G3ggIl6R9BpwX0Qsz9+irpO0bZ7nB/lb3CjgNklrSYWnG62IiMcl/QC4IxfDN0jfXl8FfpdjAI09lVNI/2ZBOtfR6BLgJkkj8voVew5PSlpGOvT3c1KPpTnnAVdIOp90zL4lXwBOlvQG8Bzw44hYUa19YxNt0j4QESup3IHAzyW9Rfp3/HdgGGk/fo53bpMrgcskvQocTuXbvtrr09w6bF9hbkB1Pyc2B9/2pAPKH/xDI+Lkts6lEkpX9lwUEdPbOpfNQdIOpGPdB1dwjLum2uu+sQXuA+1+fWq1L7gn0sFIupj0OODj2jqXDcmHzmYAj7Xn/2wbQ9IxwBWkD5D2VkDa3b6xpe0DHWV9arkvuCdiZmal+cS6mZmV5iJiZmaluYiYmVlpPrFuVgOS3iRd0dWV9GOziaST82+1aWJmm8hFxKw2Xo2IgQD5h5DXku6DNKYtkzLbVD6cZVZjEbGMdFO8M5W0eMdgScMa51O6Q/DQNkrbrFm+xNesBiS9HBE7NomtIt0E8yXgrYh4Tek28NdFRL2kjwPfjIhh+e4Bs0k3AVyPWTvhw1lmba8r8Ot8w8k3gfdBumOwpEsk1ZHusXSTC4i1Ny4iZm0g33TxTdK9kMbQ8h2DJwInAcN5+9beZu2Gi4hZjeWexWXAryMi8qGqxRHxlqSRvPuOwTOA5yLi8dpna9Y6FxGz2the6SFZjZf4XgX8Mo9r7Y7Bz+c7yd5c02zNKuQT62btWHu+Y7AZ+BJfs3Yr3zH4CeBiFxBrr9wTMTOz0twTMTOz0lxEzMysNBcRMzMrzUXEzMxKcxExM7PS/j8qed5J4sibzQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
" \n",
"left = [1, 2, 3, 4, 5, 6, 7]\n",
"\n",
"height = [monday['attendance'].mean(), tuesday['attendance'].mean(), wednesday['attendance'].mean(), \n",
"thursday['attendance'].mean(), friday['attendance'].mean(), saturday['attendance'].mean(), sunday['attendance'].mean()]\n",
"\n",
"tick_label = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']\n",
"\n",
"plt.bar(left, height, tick_label = tick_label,\n",
" width = 0.8, color = ['blue', 'green', 'red'])\n",
" \n",
"plt.xlabel('Day')\n",
"plt.ylabel('Attendance')\n",
"plt.title('Attendance - Day')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mediana"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAiC0lEQVR4nO3de7xVdbnv8c9XxFte8LLiGKCYouYlyVZeysq0EC1fUMcKUyG2R3Kr3euo3dDUdpdTdrDUjUmCN2RrJSmGHLybcjG5q7lSEwgF5aaiKPqcP36/tR0u1lpMxmLOtRbr+3695muN8YzbMwaD+czfb4w5piICMzOzMrZo7wTMzKzzchExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMy6CEl9JYWkLds7F9t8uIjYZk/SM5JelfSSpJWS/irpTEk1P/8lnS/pjiaxJ1uIDWnjtp6R9Mm2rMNsQ1xErKs4MSJ2APYEfgqcC1zdDnncB3xYUjcASbsD3YEPNIntk+ftkNyasUYuItalRMSqiJgIfBEYJukgAEmflvSopNWSFkq6oHEZSbdL+mpxPZLmSPpsiRRmkIpG/zz+UeBu4IkmsX9ExL8k7STpaklLJC2WdHGh2Owt6S5JL0p6QdL1knrkadcCewB/lvSypP9dyOEUSc/mZb5f2KctJJ0n6R95nRMk7ZKnNXaFnS7pWeCuEvtumyEXEeuSImI6sIj0hg3wCjAU6AF8Gvh3SYPztLHAqY3LSjoE6AXcXmK7rwPTgI/l0MeA+4EHmsQaWyHXAOtILZMPAAOA/9WYCvAfwHuA9wF9gAvydk4DniW1wLaPiJ8X0jgK2A84FviRpPfl+FeBwcDH8zpXAL9tsgsfz9s6bmP33TZPLiLWlf0L2AUgIu6JiLkR8VZEzAFuJL1hAkwE9pXUL4+fBtyUC0IZ9/J2wfgoqYjc3yR2r6SewAnANyLilYhYClwKDMk5N0TElIhYGxHLgF8Vcm7NhRHxakTMBmYDh+T4mcD3I2JRRKwlFaSTmnRdXZBzebXcrtvmxkXEurJewHIASYdLulvSMkmrSG+ouwFExGvATcCp+WL8ycC1za1Q0pW5++hlSd9rYbv3AUflrqK6iHgS+CvpWskuwEF5nj1JXV9L8g0BK4H/BN6dt9VT0vjczbUauK4x5w14rjC8Btg+D+8J/LGwrceAN4GehfkXVrB+60JcRKxLkvQhUhF5IIduILU4+kTETsCVpO6iRmOBU0hdQGsi4qHm1hsRZ+buo+0j4ictbP4hYCfgDODBvNxqUsvoDOBfEfE06Q17LbBbRPTIrx0j4sC8np8AARwcETuSutyKOW/sI7oXAscXttUjIraJiMVtWKdt5lxErEuRtKOkzwDjgesiYm6etAOwPCJek3QY8KXicrlovAX8khZaIZXKXUEzgW+RurEaPZBj9+X5lgB3Ar/MeW+RL6Y3dlntALwMrJLUC/huk009D7x3I1K7ErhE0p4AkuokDdq4vbOuxkXEuoo/S3qJ9Gn7+6TrB8ML088Cfpzn+REwoZl1jAMOJnUbtdW9pG6pBwqx+3OseGvvUGArYAHpQvfNwO552oXAocAq0kX+PzTZxn8AP8jdU9+pIKf/S2qN3ZmPw8PA4RuxT9YFyT9KZVYZSUOBERFxVHvnYtZRuCViVgFJ25FaK6PbOxezjsRFxGwDJB0HLCNdY7ihndMx61DcnWVmZqW5JWJmZqV1uYeo7bbbbtG3b9/2TsPMrFN55JFHXoiIuqbxLldE+vbty8yZM9s7DTOzTkXSP5uLuzvLzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSqtaEZG0jaTpkmZLmi/pwhy/RtLTkmblV/8cl6RRkhokzZF0aGFdwyQ9mV/DCvEPSpqblxklSeslYmabB6ljvQyo7mNP1gLHRMTLkroDD0i6I0/7bkTc3GT+44F++XU4cAVwuKRdgJFAPen3nR+RNDEiVuR5zgCmAZOAgcAdmJlZTVStJRLJy3m0e3619tz5QcC4vNzDQA9JuwPHAVMiYnkuHFOAgXnajhHxcKTn2Y8DBldrf8zMbH1VvSYiqZukWcBSUiGYliddkrusLpW0dY71Iv3+daNFOdZafFEz8ebyGCFppqSZy5Yta+tumZlZVtUiEhFvRkR/oDdwmKSDgPOB/YEPAbsA51Yzh5zH6Iioj4j6urr1nmRsZmYl1eTurIhYCdwNDIyIJbnLai3we+CwPNtioE9hsd451lq8dzNxMzOrkWrenVUnqUce3hb4FPB4vpZBvpNqMDAvLzIRGJrv0joCWBURS4DJwABJO0vaGRgATM7TVks6Iq9rKHBrtfbHzMzWV827s3YHxkrqRipWEyLiNkl3SaoDBMwCzszzTwJOABqANcBwgIhYLukiYEae78cRsTwPnwVcA2xLuivLd2aZmdWQ0o1NXUd9fX34lw3NOqGO9t2MLvbeKemRiKhvGvc31s3MrDQXETMzK81FxMzMSnMRMTOz0lxEzMysNBcRMzMrzUXEzMxKq+aXDc3Muqyu8rUWt0TMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSvP3RMy6IF3Ysb7EECO71m9zbE7cEjEzs9JcRMzMrDQXETMzK81FxMzMSqtaEZG0jaTpkmZLmi/pwhzfS9I0SQ2SbpK0VY5vnccb8vS+hXWdn+NPSDquEB+YYw2SzqvWvpiZWfOq2RJZCxwTEYcA/YGBko4AfgZcGhH7ACuA0/P8pwMrcvzSPB+SDgCGAAcCA4HLJXWT1A34LXA8cABwcp7XzMxqpGpFJJKX82j3/ArgGODmHB8LDM7Dg/I4efqxkpTj4yNibUQ8DTQAh+VXQ0Q8FRGvA+PzvGZmViNVvSaSWwyzgKXAFOAfwMqIWJdnWQT0ysO9gIUAefoqYNdivMkyLcWby2OEpJmSZi5btmwT7JmZmUGVi0hEvBkR/YHepJbD/tXcXit5jI6I+oior6ura48UzMw2SzW5OysiVgJ3A0cCPSQ1flO+N7A4Dy8G+gDk6TsBLxbjTZZpKW5mZjVSzbuz6iT1yMPbAp8CHiMVk5PybMOAW/PwxDxOnn5XRESOD8l3b+0F9AOmAzOAfvlur61IF98nVmt/zMxsfdV8dtbuwNh8F9UWwISIuE3SAmC8pIuBR4Gr8/xXA9dKagCWk4oCETFf0gRgAbAOODsi3gSQdA4wGegGjImI+VXcHzMza6JqRSQi5gAfaCb+FOn6SNP4a8DnW1jXJcAlzcQnAZPanKyZmZXib6ybmVlpLiJmZlaai4iZmZXmImJmZqW5iJiZWWkuImZmVpqLiJmZleYiYmZmpbmImJlZaS4iZmZWWjWfnbXZkdo7g3eKaO8MzKyrc0vEzMxKc0vErI3cQrWuzC0RMzMrzS0R61j8sd6sU3FLxMzMSnMRMTOz0tydtZnThR2neyhGumvIbHPjloiZmZXmImJmZqVVrYhI6iPpbkkLJM2X9PUcv0DSYkmz8uuEwjLnS2qQ9ISk4wrxgTnWIOm8QnwvSdNy/CZJW1Vrf8zMbH3VbImsA74dEQcARwBnSzogT7s0Ivrn1ySAPG0IcCAwELhcUjdJ3YDfAscDBwAnF9bzs7yufYAVwOlV3B8zM2uiakUkIpZExN/y8EvAY0CvVhYZBIyPiLUR8TTQAByWXw0R8VREvA6MBwZJEnAMcHNefiwwuCo7Y2ZmzarJNRFJfYEPANNy6BxJcySNkbRzjvUCFhYWW5RjLcV3BVZGxLom8ea2P0LSTEkzly1btil2yczMqEERkbQ9cAvwjYhYDVwB7A30B5YAv6x2DhExOiLqI6K+rq6u2pszM+syqvo9EUndSQXk+oj4A0BEPF+YfhVwWx5dDPQpLN47x2gh/iLQQ9KWuTVSnN/MzGqgmndnCbgaeCwiflWI716Y7bPAvDw8ERgiaWtJewH9gOnADKBfvhNrK9LF94kREcDdwEl5+WHArdXaHzMzW181WyIfAU4D5kqalWPfI91d1R8I4BngKwARMV/SBGAB6c6usyPiTQBJ5wCTgW7AmIiYn9d3LjBe0sXAo6SiZWZmNVK1IhIRDwDNPXNjUivLXAJc0kx8UnPLRcRTpLu3zMysHfgb62ZmVpqLiJmZleYiYmZmpbmImJlZaS4iZmZWmouImZmVtsEiImlfSVMlzcvj75f0g+qnZmZmHV0lLZGrgPOBNwAiYg7pW+NmZtbFVVJEtouI6U1i65qd08zMupRKisgLkvYmPaYESSeRnr5rZmZdXCWPPTkbGA3sL2kx8DRwalWzMjOzTmGDRSQ/n+qTkt4FbJF/pdDMzKyiu7N+IqlHRLwSES9J2jk/NdfMzLq4Sq6JHB8RKxtHImIFcELVMjIzs06jkiLSTdLWjSOStgW2bmV+MzPrIiq5sH49MFXS7/P4cGBs9VIyM7POopIL6z+TNAc4NocuiojJ1U3LzMw6g4p+2TAi7gDuqHIuZmbWyVRyd9bnJD0paZWk1ZJekrS6FsmZmVnHVklL5OfAiRHxWLWTMTOzzqWSu7OeL1NAJPWRdLekBZLmS/p6ju8iaUpu3UyRtHOOS9IoSQ2S5kg6tLCuYXn+JyUNK8Q/KGluXmaUJG1snmZmVl4lRWSmpJsknZy7tj4n6XMVLLcO+HZEHAAcAZwt6QDgPGBqRPQDpuZxgOOBfvk1ArgCUtEBRgKHA4cBIxsLT57njMJyAyvIy8zMNpFKurN2BNYAAwqxAP7Q2kIRsYT8oMb8TffHgF7AIODoPNtY4B7g3BwfFxEBPCyph6Td87xTImI5gKQpwEBJ9wA7RsTDOT4OGIxvADAzq5lKbvEd3taNSOoLfACYBvTMBQbgOaBnHu4FLCwstijHWosvaibe3PZHkFo37LHHHm3YEzMzK9pgEZG0DXA6cCCwTWM8Iv6tkg1I2h64BfhGRKwuXraIiJAUG5v0xoqI0aQnEVNfX1/17ZmZdRWVXBO5FvgfwHHAvUBvoKIn+UrqTiog10dEY/fX87mbivx3aY4vBvoUFu+dY63FezcTNzOzGqmkiOwTET8EXomIscCnSRe5W5XvlLoaeCwiflWYNBFovMNqGHBrIT4036V1BLAqd3tNBgbkpwfvTLo2MzlPWy3piLytoYV1mZlZDVRyYf2N/HelpINI1zHeXcFyHwFOA+ZKmpVj3wN+CkyQdDrwT+ALedok0tOBG0gX8ocDRMRySRcBM/J8P268yA6cBVwDbEu6oO6L6mZmNVRJERmdWwA/JLUWtgd+tKGFIuIBoKXvbRzbNJDvyjq7hXWNAcY0E58JHLShXMzMrDoquTvrd3nwXuC91U3HzMw6kxaLiKRvtbZgk+scZmbWBbXWEtkh/90P+BCpKwvgRGB6NZMyM7POocUiEhEXAki6Dzg0Il7K4xcAt9ckOzMz69AqucW3J/B6Yfx13v6WuZmZdWGV3J01Dpgu6Y95fDD+eVwzM6Oyu7MukfQX4KgcGh4Rj1Y3LTMz6wwq+nlcYBbpibxbAkjaIyKerVZSZmbWOVTyAMavkn7P43ngTdIXCAN4f3VTMzOzjq6SlsjXgf0i4sVqJ2NmZp1LJXdnLQRWVTsRMzPrfCppiTwF3CPpdmBtY9DfWDczs0qKyLP5tVV+mZmZAZXd4tv4zfXtImJN9VMyM7POYoPXRCQdKWkB8HgeP0TS5VXPzMzMOrxKLqz/mvTTuC8CRMRs4GNVzMnMzDqJSooIEbGwSejNKuRiZmadTCUX1hdK+jAQkrqTvjfyWHXTMjOzzqCSlsiZpJ+t7QUsBvqTftvczMy6uEpaIvtFxCnFgKSPAA9WJyUzM+ssKmmJXFZh7B0kjZG0VNK8QuwCSYslzcqvEwrTzpfUIOkJSccV4gNzrEHSeYX4XpKm5fhNkvwdFjOzGmvtN9aPBD4M1DX5vfUdgW4VrPsa4Dek3yMpujQi/k+TbR0ADAEOBN4D/D9J++bJvwU+BSwCZkiaGBELgJ/ldY2XdCVwOnBFBXmZmdkm0lpLZCtge1Kh2aHwWg2ctKEVR8R9wPIK8xgEjI+ItRHxNNAAHJZfDRHxVES8DowHBkkScAxwc15+LOnHsszMrIZa+431e4F7Jb0aET8vTpP0eeDJkts8R9JQYCbw7YhYQbpo/3BhnkU5BukBkMX44cCuwMqIWNfM/OuRNAIYAbDHHnuUTNvMzJqq5JrIkGZi55fc3hXA3qQ7vJYAvyy5no0SEaMjoj4i6uvq6mqxSTOzLqG1ayLHAycAvSSNKkzaAXijzMYi4vnC+q8Cbsuji4E+hVl75xgtxF8EekjaMrdGivObmVmNtNYS+RfwCPBa/tv4eprUFbXRJO1eGP0s0Hjn1kRgiKStJe0F9AOmAzOAfvlOrK1IraKJERHA3bx9bWYYcGuZnMzMrLzWronMBmZLuh44CPgS8HlSEbllQyuWdCNwNLCbpEWkn9g9WlJ/0s/rPgN8JW9rvqQJwAJgHXB2RLyZ13MOMJl0R9iYiJifN3EuMF7SxcCjwNUbs+NmZtZ2rXVn7QucnF8vADcBiohPVLLiiDi5mXCLb/QRcQlwSTPxScCkZuJPke7eMjOzdtLaN9YfB+4HPhMRDQCSvlmTrMzMrFNo7ZrI50h3UN0t6SpJxwKqTVpmZtYZtFhEIuJPETEE2J90EfsbwLslXSFpQI3yMzOzDmyD3xOJiFci4oaIOJF0K+2jpIvaZmbWxVX0o1SNImJF/uLesdVKyMzMOo+NKiJmZmZFLiJmZlaai4iZmZXmImJmZqW5iJiZWWkuImZmVpqLiJmZleYiYmZmpbmImJlZaS4iZmZWmouImZmV5iJiZmaluYiYmVlpLiJmZlaai4iZmZVWtSIiaYykpZLmFWK7SJoi6cn8d+ccl6RRkhokzZF0aGGZYXn+JyUNK8Q/KGluXmaUJP90r5lZjVWzJXINMLBJ7DxgakT0A6bmcYDjgX75NQK4AlLRAUYChwOHASMbC0+e54zCck23ZWZmVVa1IhIR9wHLm4QHAWPz8FhgcCE+LpKHgR6SdgeOA6ZExPKIWAFMAQbmaTtGxMMREcC4wrrMzKxGan1NpGdELMnDzwE983AvYGFhvkU51lp8UTNxMzOroXa7sJ5bEFGLbUkaIWmmpJnLli2rxSbNzLqEWheR53NXFPnv0hxfDPQpzNc7x1qL924m3qyIGB0R9RFRX1dX1+adMDOzpNZFZCLQeIfVMODWQnxovkvrCGBV7vaaDAyQtHO+oD4AmJynrZZ0RL4ra2hhXWZmViNbVmvFkm4EjgZ2k7SIdJfVT4EJkk4H/gl8Ic8+CTgBaADWAMMBImK5pIuAGXm+H0dE48X6s0h3gG0L3JFfZmZWQ1UrIhFxcguTjm1m3gDObmE9Y4AxzcRnAge1JUczM2sbf2PdzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSnMRMTOz0lxEzMysNBcRMzMrzUXEzMxKcxExM7PSXETMzKw0FxEzMyvNRcTMzEpzETEzs9JcRMzMrDQXETMzK81FxMzMSmuXIiLpGUlzJc2SNDPHdpE0RdKT+e/OOS5JoyQ1SJoj6dDCeobl+Z+UNKw99sXMrCtrz5bIJyKif0TU5/HzgKkR0Q+YmscBjgf65dcI4ApIRQcYCRwOHAaMbCw8ZmZWGx2pO2sQMDYPjwUGF+LjInkY6CFpd+A4YEpELI+IFcAUYGCNczYz69Laq4gEcKekRySNyLGeEbEkDz8H9MzDvYCFhWUX5VhL8fVIGiFppqSZy5Yt21T7YGbW5W3ZTts9KiIWS3o3MEXS48WJERGSYlNtLCJGA6MB6uvrN9l6zcy6unZpiUTE4vx3KfBH0jWN53M3Ffnv0jz7YqBPYfHeOdZS3MzMaqTmRUTSuyTt0DgMDADmAROBxjushgG35uGJwNB8l9YRwKrc7TUZGCBp53xBfUCOmZlZjbRHd1ZP4I+SGrd/Q0T8RdIMYIKk04F/Al/I808CTgAagDXAcICIWC7pImBGnu/HEbG8drthZmY1LyIR8RRwSDPxF4Fjm4kHcHYL6xoDjNnUOZqZWWU60i2+ZmbWybiImJlZaS4iZmZWmouImZmV5iJiZmaluYiYmVlpLiJmZlaai4iZmZXmImJmZqW5iJiZWWkuImZmVpqLiJmZleYiYmZmpbmImJlZaS4iZmZWmouImZmV5iJiZmaluYiYmVlpLiJmZlaai4iZmZXW6YuIpIGSnpDUIOm89s7HzKwr6dRFRFI34LfA8cABwMmSDmjfrMzMuo5OXUSAw4CGiHgqIl4HxgOD2jknM7MuY8v2TqCNegELC+OLgMObziRpBDAij74s6Yka5Naa3YAX2roSaRNkUrk256wLaprwJjnGNT7IXfK8AJ8bG9BRzos9mwt29iJSkYgYDYxu7zwaSZoZEfXtncfG6Gw5d7Z8wTnXSmfLuaPn29m7sxYDfQrjvXPMzMxqoLMXkRlAP0l7SdoKGAJMbOeczMy6jE7dnRUR6ySdA0wGugFjImJ+O6dViQ7TtbYROlvOnS1fcM610tly7tD5KiLaOwczM+ukOnt3lpmZtSMXETMzK81FpAORdIGk72yidfWQdNamWFcr23hG0m7V3EaT7R0t6bYqrr+vpHkVzPffx7baORW2ucnOjVa28TVJj0m6vkm8XtKoFpap6TnQEklflvSeTbCeDrE/ranFubAxXEQ2Xz2AqhaRLqwHm+jYSupIN7ecBXwqIk5pDEjaMiJmRsTX2jGvSnwZ2Kgi0sGOfaflIlKh/Cn1cUnXSPq7pOslfVLSg5KelHSYpF0k/UnSHEkPS3p/XvYCSWMk3SPpKUlfK6z3+3l9DwD7FeJnSJohabakWyRtJ2kHSU9L6p7n2bE43sRPgb0lzcrrua2w7t9I+nIe/qCkeyU9ImmypN1z/GuSFuR9GZ9ju0q6U9J8Sb8DVFjnn/I65ucnBCDp3yT9Og9/V9KNki7Nr7ty/Jh8LAdIekjS3yT9l6Tt8/SB+bj/DfhcYXutHdNTJU3P+/6fkrrl1zWS5kmaK+mbhf2fLWk2cHaTf+/7cz5/k/ThHB8HXNt4bIFbgD0l3ZzzvF5K3w0ufqrNn+bvKeR+raQHgWslHVjId46kflU+N9Yj6UrgvcAdklY1ye+/W1ttOQcKuV9aYU7vknR73s95kr4o6Ud53+dJGq3kJKAeuD4fw2034thXdX9a2IfWcqv1+0TbRYRfFbyAvsA64GBS8X0EGEM66QYBfwIuA0bm+Y8BZuXhC4C/AluTHmHwItAd+CAwF9gO2BFoAL6Tl9m1sO2Lga/m4d8Dg/PwCOCXreQ7Lw8fDdxWmPYb0ie37jmvuhz/Iuk2aYB/AVvn4R757yjgR3n400AAu+XxXfLfbYF5wK7A9sA/8naOID264WDgfmB6jo8EzgXuA96V13Eu8CNgG9Jjbfrl4zyhcT9aOabvA/4MdM/zXQ4Mzcd6SuEYNO7THOBjefgXhWO2HbBNHu4HzMzDHwfuzPu4E7AEWEX6ousWwEPAUXneZwrHpx64p5D7I8C2efwy4JQ8vFU+hlU7N1o5x5/Jx7JpfkcXjnvpcyBP+ytwcIX5/E/gqsL4To3byOPXAifm4XuA+qb7UsGxr+r+tLAPreVW0/eJTfFyS2TjPB0RcyPiLWA+MDXSv9Jc0pv2UaQTm4i4C9hV0o552dsjYm1EvAAsBXoCHwX+GBFrImI17/yi5EH5k/Bc4BTgwBz/HTA8Dw8nnSxl7QccBEzJn6p/QHozhPTmer2kU0nFE+BjwHV5/24HVhTW9TWlT/MPk54i0C8iXgbuAj4DvEz6D/hPYC3pzbY+H4NXSU9hfjDnMYz0nJ79Scf8yXycr2uSf3PH9FjSf7oZeV3Hkj5hPwW8V9JlkgYCqyX1IBWT+/L6ri2suztwVT7+/5XzIyLuJf1bdwNOJhW/6RGxKJ8Xs/L0DZkYEa/m4YeA70k6F9gzx9v73CjmV1T6HJC0P+nNd26FOcwFPiXpZ5I+GhGrgE9Impb3/Rje3vey+1bt/WluH1rTEd8nWuU+wY2ztjD8VmH8LdKxfKPCZd9kw8f+GtInidlKXU9HA0TEg0pdLUcD3SJigxeCSUWg+IFhm/xXwPyIOLKZZT5N+g92IvB9SQe3tPKcyyeBIyNiTW6eN27jd8D3gMdJn8C+TPq0NQf4BLAP8DSplXByk/X238B+NXdMBYyNiPObyfMQ4DjgTOALwLdaWfc3geeBQ0jH7rXCtD+QCt1wUkvn883kAe887tvwTq80DkTEDZKmkY75JElfaSUv2LTnRkte2fAsb9uIc6DiN7OI+LukQ4ETgIslTSV1OdZHxEJJF7D+cW1U0bGv9v60sA+t5dae7xOluCWyad1P+jTQeBK+kD85tOQ+YHDuw92B9IbdaAdgSe7HPKXJcuOAG2j9BH4prwPSp/8DJG2dP30fm+NPAHWSjsw5d1fqn98C6BMRd5O6lnYitSLuA76U5z0e2DmvZydgRf7Ptj+p6wqAiJhG+hT3JVKX33fyeu4nvZk/Svqk9xFJ++R1v0vSvqT/pH0l7Z1X944i04KpwEmS3p3XtYukPXMf9BYRcQupxXVoRKwEVko6Ki9bPM47AUty6+I0Usuj0TVAXeHYtuQZUqsIUrdGsyS9F3gqIkYBtwLvp7rnRlu09Ry4sdINKd1ttSYiriN1NR6aJ72gdM3spMLsxfMdKjz21d6fFvah0tyKOXbEcwFwS2RTuwAYI2kOsIb0abVFEfE3STcBs0lN1xmFyT8EpgHL8t/if5DrSf2fLZ7AEfGi0kX/ecAdpOsJ80if+h/N87yudFFylKSdSOfDr4G/A9flmIBREbFS0oXAjZLmk1oTz+bN/QU4U9JjpML0cJN0JgD9gSnAt4GHIuIVSa8B90fEsvwp6kZJW+dlfpA/xY0Abpe0hlR4dqAVEbFA0g+AO3MxfIP06fVV4Pc5BtDYUhlO+jcL0rWORpcDt0gamvev2HJ4XNJSUtffL0gtluZcCFwt6SJSn31LvgCcJukN4DngJxGxvFrnRhu16RyIiBVU7mDgF5LeIv07/jswmHQeP8c7j8k1wJWSXgWOpPJjX+39aW4ftq0wN6C67xObgh970gnlN/5BEXFae+dSCaU7ey6NiKntncumIGk7Ul/3oRX0cddURz03NsNzoMPvT63OBbdEOhlJl5F+DviE9s5lQ3LX2XRgdkf+z7YxJH0SuJr0BtLRCkiHOzc2t3Ogs+xPLc8Ft0TMzKw0X1g3M7PSXETMzKw0FxEzMyvNF9bNakDSm6Q7urqTvmw2jnRx/q12TcysjVxEzGrj1YjoD5C/CHkD6TlII9szKbO2cneWWY1FxFLSQ/HOUdLiE4MlDW5cTukJwYPaKW2zZvkWX7MakPRyRGzfJLaS9BDMl4C3IuI1pcfA3xgR9ZI+DnwzIgbnpwfMIj0EcB1mHYS7s8zaX3fgN/mBk28C+0J6YrCkyyXVkZ6xdIsLiHU0LiJm7SA/dPFN0rOQRtLyE4PHAacCQ3j70d5mHYaLiFmN5ZbFlcBvIiJyV9WiiHhL0jDWf2LwdOC5iFhQ+2zNWuciYlYb2yr9SFbjLb7XAr/K01p7YvDz+Umyf6pptmYV8oV1sw6sIz8x2Ax8i69Zh5WfGPwYcJkLiHVUbomYmVlpbomYmVlpLiJmZlaai4iZmZXmImJmZqW5iJiZWWn/H05cusdBfF7XAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"import matplotlib.pyplot as plt\n",
" \n",
"left = [1, 2, 3, 4, 5, 6, 7]\n",
"\n",
"height = [monday['attendance'].median(), tuesday['attendance'].median(), wednesday['attendance'].median(), \n",
"thursday['attendance'].median(), friday['attendance'].median(), saturday['attendance'].median(), sunday['attendance'].median()]\n",
"\n",
"tick_label = ['monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday']\n",
"\n",
"plt.bar(left, height, tick_label = tick_label,\n",
" width = 0.8, color = ['blue', 'green', 'red'])\n",
" \n",
"plt.xlabel('Day')\n",
"plt.ylabel('Attendance')\n",
"plt.title('Attendance - Day')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Najwięcej kibiców jest w weekendy."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zwycięstwo / porażka gospodarzy\n",
"![image3](win.jpg)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array(['Win', 'Loss'], dtype=object)"
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"data['home_team_outcome'].unique()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"win = data[data['home_team_outcome'] == 'Win']\n",
"loss = data[data['home_team_outcome'] == 'Loss']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Średnia ilość kibiców przy wygraniu/przegraniu gospodarzy"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaKklEQVR4nO3dfbRddX3n8feHIEiLFpTI0IAGJbVFWyneIlBtfSoEWgvtWIu2JUOZUpc6tc+Fjh2s9kHbUTu0SBdUBBwsMrVIxtLGLIpARR5uKvIUXaQoTVKEQHiUKU9+54/9u/WsS+7lZCfn3Nzc92uts+7e3/1wfvuuc/PJ/u3fPjtVhSRJfewy1w2QJM1fhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0Sk7SjJ0iSVZNe5bsuoJHkkyYvnuh3aMRgi2ikk+XyS+5PsPq3+9SRvHJjf6f+R3xpJjkjycJJFA7VzZqj9JUBV7VlVd8xFe7XjMUQ07yVZCrwGKOAn57Y1884k3b8Dhw7UXgNsmFb7EeCqMbZL84Qhop3BicC1wHnAiqlikk8ALwT+b+uC+W2+/Q/hA612RFv3F5OsbWczq5K8aGA/leTtSW5P8kCSM5OkLVuU5H8muTfJHcCPDzYsyUltvw8nuSPJLw8se22SDUl+I8k9Se5KctLA8j2SfCjJnUkeTPJPSfZoyw5Pck1rz5eTvLbPL66qnmi/ux9p+30BsBtw8bTa90z97trv46A2fV77ffxdO8brkrykT1s0T1WVL1/z+gWsA94BvBJ4Ath3YNnXgTcOzC+lO2PZdaB2XNvH9wG7Au8BrhlYXsBngb3oQmkTsLwtezvwFeAA4HnAFYP7pwuVlwABfhR4FDi0LXst8CTwPuBZwLFt+d5t+ZnA54ElwCLgSGD3Nn9fW38X4Mfa/OKev7/TgUvb9JuBC9o+B2t3TPt9HNSmz2vvfVj73V0IXDTXnwlf43t5JqJ5LcmrgRcBF1fVGuBfgLdt5W7eDvxxVa2tqieBPwIOGTwbAT5QVQ9U1b/SBcUhrf4W4M+qan1VbQb+eHDHVfV3VfUv1bkS+Bxdd9GUJ4D3VdUTVXUZ8Ajw0iS7AL8IvLuqNlbVU1V1TVU9Bvw8cFlVXVZV36qq1XTdUsdu5XFPuRJ4dTu7eg1wNfBF4PCB2pWzbH9JVV3ffncXDvxutAAYIprvVgCfq6p72/wnGejSGtKLgP/VuoYeADbTnTksGVjnGwPTjwJ7tunvBtYPLLtzcMdJjklybZLNbd/HAvsMrHJf+8d3+r73AZ5NF4pbau/PTLW37ffVwH7TV0zyc63b7pEkf7/Fo++6s/YEXk7XhXV1VT3SjmuqNtv1kJl+N1oAHKGieatdH3gLsCjJ1D9kuwN7JXlFVX2Zrutl0Ja+tno98IdVdWGPZtxF15U15YUD7dsd+DTdNZtLq+qJJJ+hC6hnci/w73RdYV/eQns/UVW/9Ew7acc063FV1b8nuQF4E7BfVX2lLbq61X4AL6prBp6JaD47HngKOJiuC+UQuusaV9P9ww1wNzB4T8Mm4FvTan8JnJbkZQBJvivJzwzZhouBX0myf5K9gVMHlu1GF2qbgCeTHAMcNcxOq+pbwLnAh5N8d7uAf0QLpv8NvCnJ0a3+7HaRfv8h27wlVwHvBq4ZqP1Tq91VVVs6I5IMEc1rK4CPV9W/VtU3pl7AXwA/1+4F+WPgPa3b5zer6lHgD4EvtNrhVXUJ8EHgoiQPAbcAxwzZhnOAVXRnC/8M/O3Ugqp6GPgVuqC5n+5azcqtOL7fBG4GbqDrYvsgsEtVracbDPC7dAG1Hvgttu3v+UrgBXTBMeWfWu3qbdivdnKp8qFUkqR+PBORJPVmiEiSejNEJEm9GSKSpN4W3H0i++yzTy1dunSumyFJ88qaNWvurarF0+sLLkSWLl3K5OTkXDdDkuaVJHduqW53liSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSptwV3x/q2yDAPNdWC5GN5tFB5JiJJ6m1kIdKe+3x9ki8nuTXJ77f6gUmuS7IuyaeS7Nbqu7f5dW350oF9ndbqX01y9EB9eautS3Lq0xohSRqpUZ6JPAa8vqpeARwCLE9yON1zoj9SVQfRPXf65Lb+ycD9rf6Rth5JDgZOAF4GLAc+mmRRkkXAmXTPwj4YeGtbV5I0JiMLkeo80maf1V4FvB74m1Y/Hzi+TR/X5mnL35AkrX5RVT1WVV8D1gGHtde6qrqjqh4HLmrrSpLGZKTXRNoZw43APcBq4F+AB6rqybbKBmBJm14CrAdoyx8Enj9Yn7bNTPUtteOUJJNJJjdt2rQdjkySBCMenVVVTwGHJNkLuAT43lG+3yztOBs4G2BiYsJxNNp5OYRQMxnREMKxjM6qqgeAK4AjgL2STIXX/sDGNr0ROACgLf8u4L7B+rRtZqpLksZklKOzFrczEJLsAfwYsJYuTN7cVlsBXNqmV7Z52vJ/rKpq9RPa6K0DgWXA9cANwLI22ms3uovvK0d1PJKkpxtld9Z+wPltFNUuwMVV9dkktwEXJfkD4EvAx9r6HwM+kWQdsJkuFKiqW5NcDNwGPAm8s3WTkeRdwCpgEXBuVd06wuORJE2TWmC32k5MTFTfZ6zb3ayZ7DB/Rn5INZNt/JAmWVNVE9Pr3rEuSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSeptZCGS5IAkVyS5LcmtSd7d6u9NsjHJje117MA2pyVZl+SrSY4eqC9vtXVJTh2oH5jkulb/VJLdRnU8kqSnG+WZyJPAb1TVwcDhwDuTHNyWfaSqDmmvywDashOAlwHLgY8mWZRkEXAmcAxwMPDWgf18sO3rIOB+4OQRHo8kaZqRhUhV3VVV/9ymHwbWAktm2eQ44KKqeqyqvgasAw5rr3VVdUdVPQ5cBByXJMDrgb9p258PHD+Sg5EkbdFYrokkWQr8IHBdK70ryU1Jzk2yd6stAdYPbLah1WaqPx94oKqenFbf0vufkmQyyeSmTZu2xyFJkhhDiCTZE/g08KtV9RBwFvAS4BDgLuBDo25DVZ1dVRNVNbF48eJRv50kLRi7jnLnSZ5FFyAXVtXfAlTV3QPLzwE+22Y3AgcMbL5/qzFD/T5gryS7trORwfUlSWMwytFZAT4GrK2qDw/U9xtY7aeAW9r0SuCEJLsnORBYBlwP3AAsayOxdqO7+L6yqgq4Anhz234FcOmojkeS9HSjPBP5YeAXgJuT3Nhqv0s3uuoQoICvA78MUFW3JrkYuI1uZNc7q+opgCTvAlYBi4Bzq+rWtr/fAS5K8gfAl+hCS5I0Jun+Q79wTExM1OTkZK9tk+3cGO00dpg/Iz+kmsk2fkiTrKmqiel171iXJPVmiEiSejNEJEm9GSKSpN4MEUlSb4aIJKk3Q0SS1JshIknqzRCRJPVmiEiSejNEJEm9GSKSpN4MEUlSb4aIJKk3Q0SS1JshIknqzRCRJPVmiEiSejNEJEm9GSKSpN4MEUlSb4aIJKk3Q0SS1JshIknqbWQhkuSAJFckuS3JrUne3erPS7I6ye3t596tniRnJFmX5KYkhw7sa0Vb//YkKwbqr0xyc9vmjCQZ1fFIkp5ulGciTwK/UVUHA4cD70xyMHAqcHlVLQMub/MAxwDL2usU4CzoQgc4HXgVcBhw+lTwtHV+aWC75SM8HknSNCMLkaq6q6r+uU0/DKwFlgDHAee31c4Hjm/TxwEXVOdaYK8k+wFHA6uranNV3Q+sBpa3Zc+tqmurqoALBvYlSRqDsVwTSbIU+EHgOmDfqrqrLfoGsG+bXgKsH9hsQ6vNVt+whfqW3v+UJJNJJjdt2rRtByNJ+g/PGCJJvifJ5UluafM/kOQ9w75Bkj2BTwO/WlUPDS5rZxC1lW3ealV1dlVNVNXE4sWLR/12krRgDHMmcg5wGvAEQFXdBJwwzM6TPIsuQC6sqr9t5btbVxTt5z2tvhE4YGDz/Vtttvr+W6hLksZkmBD5jqq6flrtyWfaqI2U+hiwtqo+PLBoJTA1wmoFcOlA/cQ2Sutw4MHW7bUKOCrJ3u2C+lHAqrbsoSSHt/c6cWBfkqQx2HWIde5N8hJat1OSNwN3zb4JAD8M/AJwc5IbW+13gQ8AFyc5GbgTeEtbdhlwLLAOeBQ4CaCqNid5P3BDW+99VbW5Tb8DOA/YA/j79pIkjUm6yxKzrJC8GDgbOBK4H/ga8PNV9fWRt24EJiYmanJyste23oWimTzDn9H4+CHVTLbxQ5pkTVVNTK8/45lIVd0BvDHJdwK7tOG6kiQNNTrrj5LsVVXfrKqH27WJPxhH4yRJO7ZhLqwfU1UPTM20G/6OHVmLJEnzxjAhsijJ7lMzSfYAdp9lfUnSAjHM6KwLgcuTfLzNn8S3v7ZEkrSADXNh/YNJbgLe0Ervr6pVo22WJGk+GOZMhKryHgxJ0tMMMzrrp9tzPB5M8lCSh5M89EzbSZJ2fsOcifwJ8KaqWjvqxkiS5pdhRmfdbYBIkrZkmDORySSfAj4DPDZVHPhWXknSAjVMiDyX7gsRjxqoFWCISNICN8wQ35PG0RBJ0vzzjCGS5NnAycDLgGdP1avqF0fYLknSPDDMhfVPAP8JOBq4ku4Jgn6TryRpqBA5qKp+D/hmVZ0P/DjwqtE2S5I0HwwTIk+0nw8keTnwXcALRtckSdJ8MczorLPbs81/j+456HsC/2OkrZIkzQvDjM76qzZ5JfDi0TZHkjSfzBgiSX59tg2r6sPbvzmSpPlktjOR57SfLwV+iK4rC+BNwPWjbJQkaX6YMUSq6vcBklwFHFpVD7f59wJ/N5bWSZJ2aMOMztoXeHxg/vFWkyQtcMOMzroAuD7JJW3+eHw8riSJ4UZn/WGSfwBe3UonVdWXRtssSdJ8MEx3FsCNwP8BLgHuS/LCZ9ogyblJ7klyy0DtvUk2JrmxvY4dWHZaknVJvprk6IH68lZbl+TUgfqBSa5r9U8l2W3IY5EkbSfDPB73vwF3A6uBz9JdVP/sEPs+D1i+hfpHquqQ9rqsvcfBwAl0X/K4HPhokkVJFgFnAscABwNvbesCfLDt6yDgfroviZQkjdEw10TeDby0qu7bmh1X1VVJlg65+nHARVX1GPC1JOuAw9qydVV1B0CSi4DjkqwFXg+8ra1zPvBe4KytaaMkadsM0521HnhwO77nu5Lc1Lq79m61Je19pmxotZnqzwceqKonp9W3KMkpSSaTTG7atGl7HYckLXjDhMgdwOfbNYtfn3r1fL+zgJcAhwB3AR/quZ+tUlVnV9VEVU0sXrx4HG8pSQvCMN1Z/9peu7VXb1V199R0knP49rWVjcABA6vu32rMUL8P2CvJru1sZHB9SdKYDDPEd+rO9e+oqke35c2S7FdVd7XZnwKmRm6tBD6Z5MPAdwPL6L5aJcCyJAfShcQJwNuqqpJcAbwZuAhYAVy6LW2TJG29YUZnHZHkNuArbf4VST46xHZ/DXwReGmSDUlOBv4kyc1JbgJeB/waQFXdClwM3Ab8A/DOqnqqnWW8C1gFrAUubusC/A7w6+0i/POBj23NgUuStl2qavYVkuvo/se/sqp+sNVuqaqXj6F9293ExERNTk722jbZzo3RTuMZ/ozGxw+pZrKNH9Ika6pqYnp9qJsNq2r9tNJT29QaSdJOYZgL6+uTHAlUkmfR3TeydrTNkiTNB8OcibwdeCfdfRgb6YbnvmOEbZIkzRPDnIm8tKp+brCQ5IeBL4ymSZKk+WKYM5E/H7ImSVpgZnvG+hHAkcDiaXeoPxdYNOqGSZJ2fLN1Z+0G7NnWec5A/SG6Ib+SpAVutmesXwlcmeT/VdWfDC5L8jPA7aNunCRpxzbMNZETtlA7bXs3RJI0/8x2TeQY4FhgSZIzBhY9B3hi1A2TJO34Zrsm8m/AGuAn288pLwK26YsYJUk7hxm7s6rqy1V1HnAQcBPwcuD36b440TvWJUmzdmd9D/DW9roX+BTdFza+bkxtkyTt4GbrzvoKcDXwE1W1DiDJr42lVZKkeWG20Vk/TfcI2yuSnJPkDXQPiZIkCZj9mshnquoE4HuBK4BfBV6Q5KwkR42pfZKkHdgz3idSVd+sqk9W1ZvonmX+JbqnCkqSFrihHko1parur6qzq+oNo2qQJGn+2KoQkSRpkCEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3kYWIknOTXJPklsGas9LsjrJ7e3n3q2eJGckWZfkpiSHDmyzoq1/e5IVA/VXJrm5bXNGEu+ml6QxG+WZyHnA8mm1U4HLq2oZcHmbBzgGWNZepwBnQRc6wOnAq4DDgNOngqet80sD201/L0nSiI0sRKrqKmDztPJxwPlt+nzg+IH6BdW5FtgryX7A0cDqqtpcVfcDq4Hlbdlzq+raqirggoF9SZLGZNzXRPatqrva9DeAfdv0EmD9wHobWm22+oYt1CVJYzRnF9bbGUSN472SnJJkMsnkpk2bxvGWkrQgjDtE7m5dUbSf97T6RuCAgfX2b7XZ6vtvob5F7fu+JqpqYvHixdt8EJKkzrhDZCUwNcJqBXDpQP3ENkrrcODB1u21Cjgqyd7tgvpRwKq27KEkh7dRWScO7EuSNCazPdlwmyT5a+C1wD5JNtCNsvoAcHGSk4E7gbe01S8DjgXWAY8CJwFU1eYk7wduaOu9r6qmLta/g24E2B7A37eXJGmM0l2aWDgmJiZqcnKy17beiaKZ7DB/Rn5INZNt/JAmWVNVE9Pr3rEuSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSeptTkIkydeT3JzkxiSTrfa8JKuT3N5+7t3qSXJGknVJbkpy6MB+VrT1b0+yYi6ORZIWsrk8E3ldVR1SVRNt/lTg8qpaBlze5gGOAZa11ynAWdCFDnA68CrgMOD0qeCRJI3HjtSddRxwfps+Hzh+oH5Bda4F9kqyH3A0sLqqNlfV/cBqYPmY2yxJC9pchUgBn0uyJskprbZvVd3Vpr8B7NumlwDrB7bd0Goz1Z8mySlJJpNMbtq0aXsdgyQteLvO0fu+uqo2JnkBsDrJVwYXVlUlqe31ZlV1NnA2wMTExHbbryQtdHNyJlJVG9vPe4BL6K5p3N26qWg/72mrbwQOGNh8/1abqS5JGpOxh0iS70zynKlp4CjgFmAlMDXCagVwaZteCZzYRmkdDjzYur1WAUcl2btdUD+q1SRJYzIX3Vn7ApckmXr/T1bVPyS5Abg4ycnAncBb2vqXAccC64BHgZMAqmpzkvcDN7T13ldVm8d3GJKkVC2sSwQTExM1OTnZa9su96Sn22H+jPyQaibb+CFNsmbgloz/sCMN8ZUkzTOGiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm/zPkSSLE/y1STrkpw61+2RpIVkXodIkkXAmcAxwMHAW5McPLetkqSFY16HCHAYsK6q7qiqx4GLgOPmuE2StGDsOtcN2EZLgPUD8xuAV01fKckpwClt9pEkXx1D2xaCfYB757oRO4JkrlugGfgZnbLtH9IXbak430NkKFV1NnD2XLdjZ5Nksqom5rod0kz8jI7efO/O2ggcMDC/f6tJksZgvofIDcCyJAcm2Q04AVg5x22SpAVjXndnVdWTSd4FrAIWAedW1a1z3KyFxC5C7ej8jI5Yqmqu2yBJmqfme3eWJGkOGSKSpN4MEfWS5LIke811O7RwJXlkrtsgr4lImqeSPFJVe851OxY6z0S0RUl+K8mvtOmPJPnHNv36JBcm+XqSfZIsTbI2yTlJbk3yuSR7zG3rtZCk86dJbklyc5KfbfX9klyV5Ma27DVJFiU5b2DdX5vr9s93hohmcjXwmjY9AeyZ5FmtdtW0dZcBZ1bVy4AHgP88rkZKwE8DhwCvAN4I/GmS/YC3AauqamrZjW29JVX18qr6fuDjc9DenYohopmsAV6Z5LnAY8AX6cLkNXQBM+hrVXXjwHZLx9RGCeDVwF9X1VNVdTdwJfBDdDcjn5TkvcD3V9XDwB3Ai5P8eZLlwENz1eidhSGiLaqqJ4CvAf8FuIYuOF4HHASsnbb6YwPTTzHPb2LVzqGqrgJ+hO6rkM5LcmJV3U93VvJ54O3AX81dC3cOhohmczXwm3TdV1fT/dF9qRyNoR3L1cDPtusdi+mC4/okLwLurqpz6MLi0CT7ALtU1aeB9wCHzlmrdxL+j1GzuRr478AXq+qbSf6dp3dlSXPtEuAI4MtAAb9dVd9IsgL4rSRPAI8AJ9I9PuLjSab+A33aXDR4Z+IQX0lSb3ZnSZJ6M0QkSb0ZIpKk3gwRSVJvhogkqTeH+EpjkOQjwJ1V9WdtfhWwvqr+a5v/EPAg8HhVfWDOGiptJc9EpPH4AnAkQLtHYR/gZQPLjwQ+Z4BovjFEpPG4hu6GOOjC4xbg4SR7J9kd+D7gB5L8BUD7ptkzklyT5I4kb56bZkuzsztLGoOq+rckTyZ5Id1Zxxfp7p4+gq4b62bg8Wmb7Uf35YLfC6wE/mZ8LZaGY4hI43MNXYAcCXyYLkSOpAuRL2xh/c9U1beA25LsO7ZWSlvB7ixpfKaui3w/XXfWtXRnIkfSBcx0g9+OnJG3TurBEJHG5xrgJ4DN7dkXm4G96IJkSyEi7fAMEWl8bqYblXXttNqDVXXv3DRJ2jZ+i68kqTfPRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST19v8BFslX+Yn4s8wAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"left = [1, 2]\n",
"\n",
"height = [win['attendance'].mean(), loss['attendance'].mean()]\n",
"\n",
"tick_label = ['win', 'loss']\n",
"\n",
"plt.bar(left, height, tick_label = tick_label,\n",
" width = 0.8, color = ['blue', 'red'])\n",
" \n",
"plt.xlabel('Win')\n",
"plt.ylabel('Attendance')\n",
"plt.title('Attendance - Win')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Mediana"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAaMklEQVR4nO3dfZQldX3n8feHQZCEGDCMLBnAITLRgA8EOwhEXZ8CA4mBZI3BZMMsYUNccaNZ8wBZdzEaE01WzZKgWYgIuCTI0SizSjLOIQhERGgiz+hhguLMBGFwhqew4cnv/lG/1rtNd3Op4d6enn6/zrmnq771q7q/6nOnP1NVv7qVqkKSpD52mO8OSJIWLkNEktSbISJJ6s0QkST1ZohIknozRCRJvRki0tMoyfIklWTH+e7LqCR5MMmPzHc/tG0wRLRdSPKFJFuS7Dyt/o0krxuY3+7/yD8VSQ5L8kCSJQO1s2ap/QVAVe1aVbfPR3+17TFEtOAlWQ68AijgZ+e3NwvOJN3fgYMHaq8ANkyrvRK4fIz90gJhiGh7cDxwFXAOsGqqmOTjwL7A/2mnYH6H7/0hvLfVDmttfzXJre1oZk2S5w5sp5K8OcltSe5NckaStGVLkvyPJPckuR346cGOJTmhbfeBJLcn+fWBZa9KsiHJO5LcneTOJCcMLN8lyQeS3JHkviT/kGSXtuzQJFe2/lyf5FV9fnFV9Wj73b2ybfc5wE7AhdNqPzr1u2u/j/3b9Dnt9/G5to9fTvK8Pn3RAlVVvnwt6BewDngL8FLgUWDPgWXfAF43ML+c7ohlx4HaMW0bPwbsCLwTuHJgeQGfBXajC6VNwMq27M3AV4F9gGcDlw5uny5UngcE+LfAQ8DBbdmrgMeAdwPPAI5uy3dvy88AvgAsA5YAhwM7t/lvt/Y7AD/V5pf2/P2dBlzUpt8AnNe2OVi7fdrvY/82fU5770Pa7+584IL5/kz4Gt/LIxEtaEleDjwXuLCqrgX+Cfilp7iZNwN/VFW3VtVjwB8CBw0ejQDvq6p7q+qbdEFxUKu/EfjTqlpfVZuBPxrccFV9rqr+qTqXAZ+nO1005VHg3VX1aFVdDDwIPD/JDsCvAm+rqo1V9XhVXVlVDwP/Hri4qi6uqu9U1Vq601JHP8X9nnIZ8PJ2dPUK4ArgS8ChA7XL5lj/01V1dfvdnT/wu9EiYIhooVsFfL6q7mnzf8XAKa0hPRf4n+3U0L3AZrojh2UDbb41MP0QsGub/mFg/cCyOwY3nOSoJFcl2dy2fTSwx0CTb7c/vtO3vQfwTLpQnKm/vzDV37bdlwN7TW+Y5JfbabsHk/ztjHvfnc7aFXgh3SmsK6rqwbZfU7W5rofM9rvRIuAIFS1Y7frAG4ElSab+kO0M7JbkJVV1Pd2pl0EzfW31euC9VXV+j27cSXcqa8q+A/3bGfgU3TWbi6rq0SSfoQuoJ3MP8K90p8Kun6G/H6+qX3uyjbR9mnO/qupfk1wDvB7Yq6q+2hZd0WovxovqmoVHIlrIjgUeBw6gO4VyEN11jSvo/nAD3AUM3tOwCfjOtNpfAKcmORAgyQ8m+YUh+3Ah8BtJ9k6yO3DKwLKd6EJtE/BYkqOAI4bZaFV9Bzgb+GCSH24X8A9rwfS/gdcnObLVn9ku0u89ZJ9ncjnwNuDKgdo/tNqdVTXTEZFkiGhBWwV8rKq+WVXfmnoBfw78crsX5I+Ad7bTPr9VVQ8B7wW+2GqHVtWngfcDFyS5H7gJOGrIPpwFrKE7WvhH4G+mFlTVA8Bv0AXNFrprNaufwv79FnAjcA3dKbb3AztU1Xq6wQC/RxdQ64HfZuv+PV8GPIcuOKb8Q6tdsRXb1XYuVT6USpLUj0cikqTeDBFJUm+GiCSpN0NEktTbortPZI899qjly5fPdzckaUG59tpr76mqpdPriy5Eli9fzuTk5Hx3Q5IWlCR3zFT3dJYkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqbdFd8f61sgwDzXVouRjebRYeSQiSerNEJEk9WaISJJ6G1mIJHlmkquTXJ/k5iS/3+r7JflyknVJPpFkp1bfuc2va8uXD2zr1Fb/WpIjB+orW21dklNGtS+SpJmN8kjkYeA1VfUS4CBgZZJDgfcDH6qq/YEtwImt/YnAllb/UGtHkgOA44ADgZXAh5MsSbIEOAM4CjgAeFNrK0kak5GFSHUebLPPaK8CXgN8stXPBY5t08e0edry1yZJq19QVQ9X1deBdcAh7bWuqm6vqkeAC1pbSdKYjPSaSDtiuA64G1gL/BNwb1U91ppsAJa16WXAeoC2/D7ghwbr09aZrS5JGpORhkhVPV5VBwF70x05vGCU7zebJCclmUwyuWnTpvnogiRtl8Zys2FV3ZvkUuAwYLckO7ajjb2Bja3ZRmAfYEOSHYEfBL49UJ8yuM5s9envfyZwJsDExIS3hWn75R2xms2I7ogd5eispUl2a9O7AD8F3ApcCryhNVsFXNSmV7d52vK/r6pq9ePa6K39gBXA1cA1wIo22msnuovvq0e1P5KkJxrlkchewLltFNUOwIVV9dkktwAXJPkD4CvAR1v7jwIfT7IO2EwXClTVzUkuBG4BHgNOrqrHAZK8FVgDLAHOrqqbR7g/kqRpUovsS38mJiZqcnKy17qeKdBstpl/Rn5INZut/JAmubaqJqbXvWNdktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktTbyEIkyT5JLk1yS5Kbk7yt1d+VZGOS69rr6IF1Tk2yLsnXkhw5UF/ZauuSnDJQ3y/Jl1v9E0l2GtX+SJKeaJRHIo8B76iqA4BDgZOTHNCWfaiqDmqviwHasuOAA4GVwIeTLEmyBDgDOAo4AHjTwHbe37a1P7AFOHGE+yNJmmZkIVJVd1bVP7bpB4BbgWVzrHIMcEFVPVxVXwfWAYe017qqur2qHgEuAI5JEuA1wCfb+ucCx45kZyRJMxrLNZEky4EfB77cSm9NckOSs5Ps3mrLgPUDq21otdnqPwTcW1WPTavP9P4nJZlMMrlp06anY5ckSYwhRJLsCnwKeHtV3Q98BHgecBBwJ/CBUfehqs6sqomqmli6dOmo306SFo0dR7nxJM+gC5Dzq+pvAKrqroHlZwGfbbMbgX0GVt+71Zil/m1gtyQ7tqORwfaSpDEY5eisAB8Fbq2qDw7U9xpo9nPATW16NXBckp2T7AesAK4GrgFWtJFYO9FdfF9dVQVcCryhrb8KuGhU+yNJeqJRHon8JPArwI1Jrmu136MbXXUQUMA3gF8HqKqbk1wI3EI3suvkqnocIMlbgTXAEuDsqrq5be93gQuS/AHwFbrQkiSNSbr/0C8eExMTNTk52Wvd5GnujLYb28w/Iz+kms1WfkiTXFtVE9Pr3rEuSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLUmyEiSerNEJEk9WaISJJ6M0QkSb0ZIpKk3gwRSVJvhogkqTdDRJLU28hCJMk+SS5NckuSm5O8rdWfnWRtktvaz91bPUlOT7IuyQ1JDh7Y1qrW/rYkqwbqL01yY1vn9CQZ1f5Ikp5olEcijwHvqKoDgEOBk5McAJwCXFJVK4BL2jzAUcCK9joJ+Ah0oQOcBrwMOAQ4bSp4WptfG1hv5Qj3R5I0zZOGSJIfTXJJkpva/IuTvPPJ1quqO6vqH9v0A8CtwDLgGODc1uxc4Ng2fQxwXnWuAnZLshdwJLC2qjZX1RZgLbCyLXtWVV1VVQWcN7AtSdIYDHMkchZwKvAoQFXdABz3VN4kyXLgx4EvA3tW1Z1t0beAPdv0MmD9wGobWm2u+oYZ6jO9/0lJJpNMbtq06al0XZI0h2FC5Puq6upptceGfYMkuwKfAt5eVfcPLmtHEDXstvqqqjOraqKqJpYuXTrqt5OkRWOYELknyfNof+yTvAG4c+5VOkmeQRcg51fV37TyXe1UFO3n3a2+EdhnYPW9W22u+t4z1CVJYzJMiJwM/C/gBUk2Am8H/tOTrdRGSn0UuLWqPjiwaDUwNcJqFXDRQP34NkrrUOC+dtprDXBEkt3bBfUjgDVt2f1JDm3vdfzAtiRJY7DjkzWoqtuB1yX5fmCHdpF8GD8J/ApwY5LrWu33gPcBFyY5EbgDeGNbdjFwNLAOeAg4ob3/5iTvAa5p7d5dVZvb9FuAc4BdgL9tL0nSmKS7LDFHg+QPgT+uqnvb/O50Q3efdITWtmhiYqImJyd7retdKJrNk/wzGh8/pJrNVn5Ik1xbVRPT68OczjpqKkC6ftQWuiMGSdIiN0yILEmy89RMkl2AnedoL0laJJ70mghwPnBJko+1+RP43s2CkqRFbJgL6+9PcgPw2lZ6T1WtGW23JEkLwTBHIlSVI58kSU8wzHdn/Xz79tz7ktyf5IEk9z/ZepKk7d8wRyJ/DLy+qm4ddWckSQvLMKOz7jJAJEkzGeZIZDLJJ4DPAA9PFQe+C0uStEgNEyLPovsakiMGagUYIpK0yA0zxPeEcXREkrTwPGmIJHkmcCJwIPDMqXpV/eoI+yVJWgCGubD+ceDf0D2m9jK653YM+02+kqTt2DAhsn9V/TfgX6rqXOCngZeNtluSpIVgmBB5tP28N8kLgR8EnjO6LkmSFophRmed2Z4h8t/onj64K/DfR9orSdKCMMzorL9sk5cBPzLa7kiSFpJZQyTJf5lrxWnPTZckLUJzHYn8QPv5fOAn6E5lAbweuHqUnZIkLQyzhkhV/T5AksuBg6vqgTb/LuBzY+mdJGmbNszorD2BRwbmH2k1SdIiN8zorPOAq5N8us0fi4/HlSQx3Ois9yb5O+DlrXRCVX1ltN2SJC0EQz0eF7gOuHOqfZJ9q+qbo+qUJGlhGObxuP8ZuAtYC3yW7qL6Z4dY7+wkdye5aaD2riQbk1zXXkcPLDs1ybokX0ty5EB9ZautS3LKQH2/JF9u9U8k2WnovZYkPS2GubD+NuD5VXVgVb24ql5UVS8eYr1zgJUz1D9UVQe118UASQ4AjqP7puCVwIeTLEmyBDgDOAo4AHhTawvw/rat/YEtdN80LEkao2FCZD1w31PdcFVdDmwesvkxwAVV9XBVfR1YBxzSXuuq6vaqegS4ADgmSYDXAJ9s659Ld8FfkjRGw1wTuR34QpLP8f8/HrfvHetvTXI8MAm8o6q2AMuAqwbabGg16EJssP4y4IeAe6vqsRnaP0GSk4CTAPbdd9+e3ZYkTTfMkcg36a6H7ER3F/vUq4+PAM8DDqK7UP+Bntt5SqrqzKqaqKqJpUuXjuMtJWlRGGaI79Sd699XVQ9tzZtV1V1T00nO4nsX6DcC+ww03bvVmKX+bWC3JDu2o5HB9pKkMRlmdNZhSW4BvtrmX5Lkw33eLMleA7M/B0yN3FoNHJdk5yT7ASvovp/rGmBFG4m1E93F99VVVcClwBva+quAi/r0SZLU3zDXRP6U7tG4qwGq6vokr3yylZL8NfAqYI8kG4DTgFclOQgo4BvAr7dt3pzkQuAW4DHg5Kp6vG3nrcAaYAlwdlXd3N7id4ELkvwB8BXgo0PsiyTpaTTUzYZVtb4bEPVdjw+xzptmKM/6h76q3gu8d4b6xcDFM9Rvpxu9JUmaJ8OEyPokhwOV5Bl0943cOtpuSZIWgmFGZ70ZOJluCO1GupFVbxlhnyRJC8QwRyLPr6pfHiwk+Ungi6PpkiRpoRjmSOTPhqxJkhaZuZ6xfhhwOLB02vPWn0U3UkqStMjNdTprJ2DX1mbwDvX7+d79GZKkRWyuZ6xfBlyW5P9W1R8PLkvyC8Bto+6cJGnbNsw1keNmqJ36dHdEkrTwzHVN5CjgaGBZktMHFv0A8OioOyZJ2vbNdU3kn4FrgZ9tP6c8F9iqL2KUJG0fZj2dVVXXV9U5wP7ADcALgd8HXo13rEuSmPt01o8Cb2qve4BPAKmqV4+pb5Kkbdxcp7O+ClwB/ExVrQNI8ptj6ZUkaUGYa3TWz9M9ffDSJGcleS2QOdpLkhaZua6JfKaqjgNeQPcAqLcDz0nykSRHjKl/kqRt2JPeJ1JV/1JVf1VVr6d7DO1X6B4IJUla5Ia52fC7qmpLVZ1ZVa8dVYckSQvHUwoRSZIGGSKSpN4MEUlSb4aIJKk3Q0SS1JshIknqzRCRJPU2shBJcnaSu5PcNFB7dpK1SW5rP3dv9SQ5Pcm6JDckOXhgnVWt/W1JVg3UX5rkxrbO6Un8ShZJGrNRHomcA6ycVjsFuKSqVgCXtHmAo4AV7XUS8BHoQgc4DXgZcAhw2lTwtDa/NrDe9PeSJI3YyEKkqi4HNk8rHwOc26bPBY4dqJ9XnauA3ZLsBRwJrK2qzVW1BVgLrGzLnlVVV1VVAecNbEuSNCbjviayZ1Xd2aa/BezZppcB6wfabWi1ueobZqjPKMlJSSaTTG7atGnr9kCS9F3zdmG9HUHUmN7rzKqaqKqJpUuXjuMtJWlRGHeI3NVORdF+3t3qG4F9Btrt3Wpz1feeoS5JGqNxh8hqYGqE1SrgooH68W2U1qHAfe201xrgiCS7twvqRwBr2rL7kxzaRmUdP7AtSdKYzPV43K2S5K+BVwF7JNlAN8rqfcCFSU4E7gDe2JpfDBwNrAMeAk4AqKrNSd4DXNPavbuqpi7Wv4VuBNguwN+2lyRpjNJdmlg8JiYmanJyste63omi2Wwz/4z8kGo2W/khTXJtVU1Mr3vHuiSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm/zEiJJvpHkxiTXJZlstWcnWZvktvZz91ZPktOTrEtyQ5KDB7azqrW/Lcmq+dgXSVrM5vNI5NVVdVBVTbT5U4BLqmoFcEmbBzgKWNFeJwEfgS50gNOAlwGHAKdNBY8kaTy2pdNZxwDntulzgWMH6udV5ypgtyR7AUcCa6tqc1VtAdYCK8fcZ0la1OYrRAr4fJJrk5zUantW1Z1t+lvAnm16GbB+YN0NrTZbXZI0JjvO0/u+vKo2JnkOsDbJVwcXVlUlqafrzVpQnQSw7777Pl2blaRFb16ORKpqY/t5N/Bpumsad7XTVLSfd7fmG4F9Blbfu9Vmq8/0fmdW1URVTSxduvTp3BVJWtTGHiJJvj/JD0xNA0cANwGrgakRVquAi9r0auD4NkrrUOC+dtprDXBEkt3bBfUjWk2SNCbzcTprT+DTSabe/6+q6u+SXANcmORE4A7gja39xcDRwDrgIeAEgKranOQ9wDWt3buravP4dkOSlKqn7dLDgjAxMVGTk5O91u1yT3qibeafkR9SzWYrP6RJrh24JeO7tqUhvpKkBcYQkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6s0QkST1ZohIknozRCRJvRkikqTeDBFJUm+GiCSpN0NEktSbISJJ6m3Bh0iSlUm+lmRdklPmuz+StJgs6BBJsgQ4AzgKOAB4U5ID5rdXkrR4LOgQAQ4B1lXV7VX1CHABcMw890mSFo0d57sDW2kZsH5gfgPwsumNkpwEnNRmH0zytTH0bTHYA7hnvjuxLUjmuweahZ/RKVv/IX3uTMWFHiJDqaozgTPnux/bmySTVTUx3/2QZuNndPQW+umsjcA+A/N7t5okaQwWeohcA6xIsl+SnYDjgNXz3CdJWjQW9OmsqnosyVuBNcAS4Oyqunmeu7WYeIpQ2zo/oyOWqprvPkiSFqiFfjpLkjSPDBFJUm+GiHpJcnGS3ea7H1q8kjw4332Q10QkLVBJHqyqXee7H4udRyKaUZLfTvIbbfpDSf6+Tb8myflJvpFkjyTLk9ya5KwkNyf5fJJd5rf3WkzS+ZMkNyW5MckvtvpeSS5Pcl1b9ookS5KcM9D2N+e7/wudIaLZXAG8ok1PALsmeUarXT6t7QrgjKo6ELgX+Hfj6qQE/DxwEPAS4HXAnyTZC/glYE1VTS27rrVbVlUvrKoXAR+bh/5uVwwRzeZa4KVJngU8DHyJLkxeQRcwg75eVdcNrLd8TH2UAF4O/HVVPV5VdwGXAT9BdzPyCUneBbyoqh4Abgd+JMmfJVkJ3D9fnd5eGCKaUVU9Cnwd+A/AlXTB8Wpgf+DWac0fHph+nAV+E6u2D1V1OfBKuq9COifJ8VW1he6o5AvAm4G/nL8ebh8MEc3lCuC36E5fXUH3j+4r5WgMbVuuAH6xXe9YShccVyd5LnBXVZ1FFxYHJ9kD2KGqPgW8Ezh43nq9nfB/jJrLFcB/Bb5UVf+S5F954qksab59GjgMuB4o4Heq6ltJVgG/neRR4EHgeLrHR3wsydR/oE+djw5vTxziK0nqzdNZkqTeDBFJUm+GiCSpN0NEktSbISJJ6s0hvtIYJPkQcEdV/WmbXwOsr6r/2OY/ANwHPFJV75u3jkpPkUci0nh8ETgcoN2jsAdw4MDyw4HPGyBaaAwRaTyupLshDrrwuAl4IMnuSXYGfgx4cZI/B2jfNHt6kiuT3J7kDfPTbWluns6SxqCq/jnJY0n2pTvq+BLd3dOH0Z3GuhF4ZNpqe9F9ueALgNXAJ8fXY2k4hog0PlfSBcjhwAfpQuRwuhD54gztP1NV3wFuSbLn2HopPQWezpLGZ+q6yIvoTmddRXckcjhdwEw3+O3IGXnvpB4MEWl8rgR+Btjcnn2xGdiNLkhmChFpm2eISONzI92orKum1e6rqnvmp0vS1vFbfCVJvXkkIknqzRCRJPVmiEiSejNEJEm9GSKSpN4MEUlSb4aIJKm3/weuWGUIdElNVQAAAABJRU5ErkJggg==",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"left = [1, 2]\n",
"\n",
"height = [win['attendance'].median(), loss['attendance'].median()]\n",
"\n",
"tick_label = ['win', 'loss']\n",
"\n",
"plt.bar(left, height, tick_label = tick_label,\n",
" width = 0.8, color = ['blue', 'red'])\n",
" \n",
"plt.xlabel('Win')\n",
"plt.ylabel('Attendance')\n",
"plt.title('Attendance - Win')\n",
"\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Nie ma to wpływu, raczej nie jest tak, że widać przegraną przed końcem i przez to kibice wychodzą. A nawet jeśli to działa to w miarę równomiernie w obie strony."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3.9.0 64-bit",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.0"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "3dafdb3de6203a1118d6c063d9a807622a512a5be3d463a10b75ce9c56521739"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}