2023-01-15 12:40:35 +01:00
|
|
|
import sys
|
|
|
|
import cv2
|
|
|
|
import numpy as np
|
2023-01-29 22:43:45 +01:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
2023-01-29 22:57:29 +01:00
|
|
|
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance
|
2023-01-31 20:48:24 +01:00
|
|
|
from load_test_data import load_data
|
2023-01-15 12:40:35 +01:00
|
|
|
|
2023-01-29 21:23:11 +01:00
|
|
|
# Allows imports from the style transfer submodule
|
|
|
|
sys.path.append('DCT-Net')
|
|
|
|
|
2023-01-15 12:40:35 +01:00
|
|
|
from source.cartoonize import Cartoonizer
|
|
|
|
|
2023-01-29 21:14:30 +01:00
|
|
|
|
2023-01-15 12:40:35 +01:00
|
|
|
def load_source(filename: str) -> np.ndarray:
|
2023-01-29 21:23:11 +01:00
|
|
|
return cv2.imread(filename)[..., ::-1]
|
2023-01-15 12:40:35 +01:00
|
|
|
|
|
|
|
|
2023-01-29 22:43:45 +01:00
|
|
|
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray:
|
2023-01-29 15:17:39 +01:00
|
|
|
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
|
2023-01-29 22:43:45 +01:00
|
|
|
face_cascade = cv2.CascadeClassifier(classifier_file)
|
|
|
|
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
|
2023-01-29 15:17:39 +01:00
|
|
|
face = max(face, key=len)
|
2023-01-29 21:14:30 +01:00
|
|
|
x, y, w, h = face
|
2023-01-29 15:17:39 +01:00
|
|
|
face = data[y:y + h, x:x + w]
|
2023-01-29 18:58:45 +01:00
|
|
|
return face
|
2023-01-15 12:40:35 +01:00
|
|
|
|
|
|
|
|
2023-01-29 22:43:45 +01:00
|
|
|
def plot_two_images(a: np.ndarray, b: np.ndarray):
|
|
|
|
plt.figure(figsize=[10, 10])
|
|
|
|
plt.subplot(121)
|
|
|
|
plt.imshow(a)
|
|
|
|
plt.title("A")
|
|
|
|
plt.subplot(122)
|
|
|
|
plt.imshow(b)
|
|
|
|
plt.title("B")
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
2023-01-31 21:08:01 +01:00
|
|
|
def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
|
2023-01-31 20:48:24 +01:00
|
|
|
all_metrics = []
|
2023-01-31 21:08:01 +01:00
|
|
|
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
|
2023-01-31 20:48:24 +01:00
|
|
|
current_result = {
|
|
|
|
'name': label,
|
|
|
|
'metrics': {}
|
|
|
|
}
|
|
|
|
# TODO: Use a different face detection method for anime images
|
|
|
|
# anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml')
|
|
|
|
anime_face = anime_image
|
|
|
|
source_rescaled = cv2.resize(source, anime_face.shape[:2])
|
|
|
|
if verbose:
|
|
|
|
plot_two_images(anime_face, source_rescaled)
|
|
|
|
current_result['metrics'] = histogram_comparison(source_rescaled, anime_face)
|
|
|
|
current_result['metrics']['structural-similarity'] = structural_similarity_index(source_rescaled, anime_face)
|
|
|
|
current_result['metrics']['euclidean-distance'] = euclidean_distance(source_rescaled, anime_face)
|
|
|
|
all_metrics.append(current_result)
|
|
|
|
|
|
|
|
return all_metrics
|
|
|
|
|
|
|
|
|
|
|
|
def get_top_results(all_metrics: list[dict], metric='correlation', count=1):
|
|
|
|
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
|
|
|
|
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
|
2023-01-15 12:40:35 +01:00
|
|
|
|
|
|
|
|
2023-01-29 15:17:39 +01:00
|
|
|
def transfer_to_anime(img: np.ndarray):
|
2023-01-29 21:23:11 +01:00
|
|
|
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
|
2023-01-29 22:43:45 +01:00
|
|
|
return algo.cartoonize(img).astype(np.uint8)
|
2023-01-15 12:40:35 +01:00
|
|
|
|
|
|
|
|
2023-01-31 21:08:01 +01:00
|
|
|
def validate(test_set, anime_faces_set, metric='correlation'):
|
|
|
|
all_entries = len(test_set['values'])
|
|
|
|
correct = 0
|
|
|
|
for test_image, test_label in zip(test_set['values'], test_set['labels']):
|
|
|
|
output = get_top_results(compare_with_anime_characters(test_image), metric)[0]['name']
|
|
|
|
if output == test_label:
|
|
|
|
correct += 1
|
|
|
|
|
|
|
|
accuracy = correct / all_entries
|
|
|
|
print(f'Accuracy using {metric}: {accuracy * 100}%')
|
|
|
|
return accuracy
|
|
|
|
|
|
|
|
|
2023-01-15 12:40:35 +01:00
|
|
|
if __name__ == '__main__':
|
2023-01-31 21:08:01 +01:00
|
|
|
anime_faces_set = load_data('data/images')
|
|
|
|
|
|
|
|
# Uncomment for validation (takes a while)
|
|
|
|
# test_set = load_data('test_set')
|
|
|
|
# validate(test_set, anime_faces_set, 'structural-similarity')
|
|
|
|
# validate(test_set, anime_faces_set, 'euclidean-distance')
|
|
|
|
# validate(test_set, anime_faces_set, 'chi-square')
|
|
|
|
# validate(test_set, anime_faces_set, 'correlation')
|
|
|
|
# validate(test_set, anime_faces_set, 'intersection')
|
|
|
|
# validate(test_set, anime_faces_set, 'bhattacharyya-distance')
|
2023-01-29 22:43:45 +01:00
|
|
|
source = load_source('UAM-Andre.jpg')
|
|
|
|
source_anime = transfer_to_anime(source)
|
|
|
|
source_face_anime = find_and_crop_face(source_anime)
|
2023-01-31 21:08:01 +01:00
|
|
|
results = compare_with_anime_characters(source_face_anime, anime_faces_set)
|
2023-01-31 20:48:24 +01:00
|
|
|
print(get_top_results(results, count=5))
|