Compare commits

..

16 Commits

Author SHA1 Message Date
f0b209c42e Merge pull request 'Plot results' (#6) from pretty-results into main
Reviewed-on: #6
2023-02-01 22:14:51 +01:00
b1e8c02f38 Merge pull request 'Fixes' (#8) from flipping into pretty-results
Reviewed-on: #8
2023-02-01 22:14:43 +01:00
37925c25fb Use correlation 2023-02-01 21:27:39 +01:00
185b832cee Fix debug flags 2023-02-01 21:16:33 +01:00
561fa5e447 Yolo face detection 2023-02-01 21:09:36 +01:00
437de18b15 More robust face detection 2023-02-01 20:25:31 +01:00
7e9b63e43e Refactor and bug fixes 2023-02-01 19:55:12 +01:00
3817096c34 Faster validation 2023-02-01 18:42:07 +01:00
f2bbd02259 Merge branch 'main' into pretty-results 2023-02-01 18:11:25 +01:00
7e76f516fd Merge pull request 'Mierzenie accuracy nie tylko na top 1 outpucie' (#7) from top-k-validation into main
Reviewed-on: #7
2023-02-01 18:09:26 +01:00
ca9163d134 Invert color channels in anime image 2023-02-01 18:08:55 +01:00
9c4d70a21b Add validation for top-k results 2023-02-01 13:47:51 +01:00
30d8247273 Plot results 2023-02-01 13:16:46 +01:00
327d15c8a2 Merge pull request 'Add README.md' (#5) from readme into main
Reviewed-on: #5
2023-02-01 12:30:22 +01:00
4db2687329 Add README.md 2023-02-01 12:28:51 +01:00
e63892f806 Merge pull request 'Porównanie z całym datasetem z twarzami oraz walidacja' (#4) from full-dataset-comparison into main
Reviewed-on: #4
2023-02-01 11:03:06 +01:00
13 changed files with 88913 additions and 60 deletions

1
.gitignore vendored
View File

@ -1,5 +1,6 @@
data data
.idea .idea
.yoloface
# Byte-compiled / optimized / DLL files # Byte-compiled / optimized / DLL files
__pycache__/ __pycache__/

40
README.md Normal file
View File

@ -0,0 +1,40 @@
# wko_anime-face-similarity
Projekt przygotowany na zajęcia z widzenia komputerowego.
Rozpoznaje twarz na zdjęciu wejściowym i dokonując transferu stylu do anime, porównuje zdjęcie ze zbiorem postaci
z anime i wskazuje podobieństwa według wybranych metryk.
## Instalacja
1. Pobranie submodułów:
```shell
$ git submodule update --init
```
2. Instalacja zależności:
* Windows/Linux
```shell
$ pip install -r requirements.txt
```
* MacOS
```shell
$ pip install -r requirements-osx.txt
```
3. Konfiguracja DCT-Netu (anime style transfer)
```shell
$ cd DCT-Net && python download.py
```
4. Pobranie datasetu twarzy postaci z anime (MyAnimeList)
```shell
$ python scrape_data.py
```
## Uruchomienie
Na tę chwilę zdjęcie poddawane porównaniu to `UAM-Andre.jpg`
```shell
$ python main.py
```
### Walidacja
Do walidacji metryk na postawie testowego datasetu z cosplayerami (`test_set`) uruchamiamy
```shell
$ python --validate_only 1
```

54
face_detect.py Normal file
View File

@ -0,0 +1,54 @@
import cv2
import numpy as np
from yoloface import face_analysis
face_detector = face_analysis()
def equalize_image(data: np.ndarray):
data_hsv = cv2.cvtColor(data, cv2.COLOR_RGB2HSV)
data_hsv[:, :, 2] = cv2.equalizeHist(data_hsv[:, :, 2])
return cv2.cvtColor(data_hsv, cv2.COLOR_HSV2RGB)
def find_face_bbox_yolo(data: np.ndarray):
_, box, conf = face_detector.face_detection(frame_arr=data, frame_status=True, model='full')
if len(box) < 1:
return None, None
return box, conf
def find_face_bbox(data: np.ndarray):
classifier_files = [
'haarcascades/haarcascade_frontalface_default.xml',
'haarcascades/haarcascade_frontalface_alt.xml',
'haarcascades/haarcascade_frontalface_alt2.xml',
'haarcascades/haarcascade_profileface.xml',
'haarcascades/haarcascade_glasses.xml',
'lbpcascade_animeface.xml',
]
data_equalized = equalize_image(data)
data_gray = cv2.cvtColor(data_equalized, cv2.COLOR_RGB2GRAY)
face_coords, conf = find_face_bbox_yolo(cv2.cvtColor(data_equalized, cv2.COLOR_RGB2BGR))
if face_coords is not None:
return face_coords[0]
for classifier in classifier_files:
face_cascade = cv2.CascadeClassifier(classifier)
face_coords = face_cascade.detectMultiScale(data_gray, 1.1, 3)
if face_coords is not None:
break
return max(face_coords, key=lambda v: v[2]*v[3])
def crop_face(data: np.ndarray, bounding_box) -> np.ndarray:
x, y, w, h = bounding_box
# Extending the boxes
factor = 0.4
x, y = round(x - factor * w), round(y - factor * h)
w, h = round(w + factor * w * 2), round(h + factor * h * 2)
y = max(y, 0)
x = max(x, 0)
face = data[y:y + h, x:x + w]
return face

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

12
helpers.py Normal file
View File

@ -0,0 +1,12 @@
import os
import sys
def no_stdout(func):
def wrapper(*args, **kwargs):
old_stdout = sys.stdout
sys.stdout = open(os.devnull, "w")
ret = func(*args, **kwargs)
sys.stdout = old_stdout
return ret
return wrapper

View File

@ -5,7 +5,11 @@ import cv2 as cv
from pathlib import Path from pathlib import Path
def load_data(input_dir, newSize=(64,64)): def load_source(filename: str) -> np.ndarray:
return cv.imread(filename)[..., ::-1]
def load_data(input_dir):
image_path = Path(input_dir) image_path = Path(input_dir)
file_names = os.listdir(image_path) file_names = os.listdir(image_path)
categories_name = [] categories_name = []
@ -27,8 +31,7 @@ def load_data(input_dir, newSize=(64,64)):
for n in file_names: for n in file_names:
p = image_path / n p = image_path / n
img = imread(p) # zwraca ndarry postaci xSize x ySize x colorDepth img = load_source(str(p)) # zwraca ndarry postaci xSize x ySize x colorDepth
img = cv.resize(img, newSize, interpolation=cv.INTER_AREA) # zwraca ndarray
test_img.append(img) test_img.append(img)
labels.append(n) labels.append(n)

120
main.py
View File

@ -1,11 +1,16 @@
import argparse import argparse
import sys import sys
import cv2 import cv2
import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np
from comparisons import histogram_comparison, structural_similarity_index, euclidean_distance from metrics import histogram_comparison, structural_similarity_index, euclidean_distance, AccuracyGatherer
from load_test_data import load_data
from face_detect import find_face_bbox, crop_face
from helpers import no_stdout
from load_test_data import load_data, load_source
from metrics import get_top_results
from plots import plot_two_images, plot_results
# Allows imports from the style transfer submodule # Allows imports from the style transfer submodule
sys.path.append('DCT-Net') sys.path.append('DCT-Net')
@ -13,32 +18,10 @@ sys.path.append('DCT-Net')
from source.cartoonize import Cartoonizer from source.cartoonize import Cartoonizer
def load_source(filename: str) -> np.ndarray: anime_transfer = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models')
return cv2.imread(filename)[..., ::-1]
def find_and_crop_face(data: np.ndarray, classifier_file='haarcascades/haarcascade_frontalface_default.xml') -> np.ndarray: def compare_with_anime_characters(source_image: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
data_gray = cv2.cvtColor(data, cv2.COLOR_BGR2GRAY)
face_cascade = cv2.CascadeClassifier(classifier_file)
face = face_cascade.detectMultiScale(data_gray, 1.1, 3)
face = max(face, key=len)
x, y, w, h = face
face = data[y:y + h, x:x + w]
return face
def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.figure(figsize=[10, 10])
plt.subplot(121)
plt.imshow(a)
plt.title("A")
plt.subplot(122)
plt.imshow(b)
plt.title("B")
plt.show()
def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict, verbose=False) -> list[dict]:
all_metrics = [] all_metrics = []
for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']): for anime_image, label in zip(anime_faces_dataset['values'], anime_faces_dataset['labels']):
current_result = { current_result = {
@ -48,7 +31,7 @@ def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict,
# TODO: Use a different face detection method for anime images # TODO: Use a different face detection method for anime images
# anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml') # anime_face = find_and_crop_face(anime_image, 'haarcascades/lbpcascade_animeface.xml')
anime_face = anime_image anime_face = anime_image
source_rescaled = cv2.resize(source, anime_face.shape[:2]) source_rescaled = cv2.resize(source_image, anime_face.shape[:2])
if verbose: if verbose:
plot_two_images(anime_face, source_rescaled) plot_two_images(anime_face, source_rescaled)
current_result['metrics'] = histogram_comparison(source_rescaled, anime_face) current_result['metrics'] = histogram_comparison(source_rescaled, anime_face)
@ -59,48 +42,73 @@ def compare_with_anime_characters(source: np.ndarray, anime_faces_dataset: dict,
return all_metrics return all_metrics
def get_top_results(all_metrics: list[dict], metric='correlation', count=1): @no_stdout
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
def transfer_to_anime(img: np.ndarray): def transfer_to_anime(img: np.ndarray):
algo = Cartoonizer(dataroot='DCT-Net/damo/cv_unet_person-image-cartoon_compound-models') model_out = anime_transfer.cartoonize(img).astype(np.uint8)
return algo.cartoonize(img).astype(np.uint8) return cv2.cvtColor(model_out, cv2.COLOR_BGR2RGB)
def validate(test_set, anime_faces_set, metric='correlation'): def similarity_to_anime(source_image, anime_faces_set, debug=False):
try:
source_face_bbox = find_face_bbox(source_image)
except ValueError:
return None
source_anime = transfer_to_anime(source_image)
source_face_anime = crop_face(source_anime, source_face_bbox)
if debug:
source_image_with_box = source_image.copy()
x, y, w, h = source_face_bbox
cv2.rectangle(source_image_with_box, (x, y), (x + w, y + h), (255, 0, 0), 2)
plt.figure(figsize=[12, 4])
plt.subplot(131)
plt.imshow(source_image_with_box)
plt.subplot(132)
plt.imshow(source_anime)
plt.subplot(133)
plt.imshow(source_face_anime)
plt.show()
return compare_with_anime_characters(source_face_anime, anime_faces_set, verbose=debug)
def validate(test_set, anime_faces_set):
all_entries = len(test_set['values']) all_entries = len(test_set['values'])
correct = 0 accuracy = AccuracyGatherer(all_entries)
for test_image, test_label in zip(test_set['values'], test_set['labels']): for test_image, test_label in zip(test_set['values'], test_set['labels']):
output = get_top_results(compare_with_anime_characters(test_image, anime_faces_set), metric)[0]['name'] test_results = similarity_to_anime(test_image, anime_faces_set)
if output == test_label:
correct += 1
accuracy = correct / all_entries if test_results is None:
print(f'Accuracy using {metric}: {accuracy * 100}%') print(f"cannot find face for {test_label}")
return accuracy all_entries -= 1
continue
accuracy.for_results(test_results, test_label)
accuracy.count = all_entries
accuracy.print()
if __name__ == '__main__':
def main():
parser = argparse.ArgumentParser() parser = argparse.ArgumentParser()
parser.add_argument('-v', '--validate_only') parser.add_argument('-v', '--validate_only')
args = parser.parse_args() args = parser.parse_args()
anime_faces_set = load_data('data/images') anime_faces_set = load_data('data/croped_anime_faces')
if args.validate_only: if args.validate_only:
print('Validating') print('Validating')
test_set = load_data('test_set') test_set = load_data('test_set')
validate(test_set, anime_faces_set, 'structural-similarity') validate(test_set, anime_faces_set)
validate(test_set, anime_faces_set, 'euclidean-distance')
validate(test_set, anime_faces_set, 'chi-square')
validate(test_set, anime_faces_set, 'correlation')
validate(test_set, anime_faces_set, 'intersection')
validate(test_set, anime_faces_set, 'bhattacharyya-distance')
exit(0) exit(0)
source = load_source('UAM-Andre.jpg') source = load_source('test_set/Ayanokouji, Kiyotaka.jpg')
source_anime = transfer_to_anime(source) results = similarity_to_anime(source, anime_faces_set)
source_face_anime = find_and_crop_face(source_anime) method = 'correlation'
results = compare_with_anime_characters(source_face_anime, anime_faces_set) top_results = get_top_results(results, count=4, metric=method)
print(get_top_results(results, count=5)) print(top_results)
plot_results(source, transfer_to_anime(source), top_results, anime_faces_set, method)
if __name__ == '__main__':
main()

View File

@ -40,3 +40,42 @@ def euclidean_distance(data_a: np.ndarray, data_b: np.ndarray) -> float:
result += (histogram_a[i] - histogram_b[i]) ** 2 result += (histogram_a[i] - histogram_b[i]) ** 2
i += 1 i += 1
return result[0] ** (1 / 2) return result[0] ** (1 / 2)
def get_top_results(all_metrics: list[dict], metric='correlation', count=1):
all_metrics.sort(reverse=True, key=lambda item: item['metrics'][metric])
return list(map(lambda item: {'name': item['name'], 'score': item['metrics'][metric]}, all_metrics[:count]))
class AccuracyGatherer:
all_metric_names = [
'structural-similarity',
'euclidean-distance',
'chi-square',
'correlation',
'intersection',
'bhattacharyya-distance'
]
def __init__(self, count, top_ks=(1, 3, 5)):
self.top_ks = top_ks
self.hits = {k: {metric: 0 for metric in AccuracyGatherer.all_metric_names} for k in top_ks}
self.count = count
def print(self):
for k in self.top_ks:
all_metrics = {metric: self.hits[k][metric] / self.count for metric in AccuracyGatherer.all_metric_names}
print(f'Top {k} matches results:')
[print(f'\t{key}: {value * 100}%') for key, value in all_metrics.items()]
def for_results(self, results, test_label):
top_results_all_metrics = {
k: {m: get_top_results(results, m, k) for m in AccuracyGatherer.all_metric_names} for k in self.top_ks
}
for metric_name in AccuracyGatherer.all_metric_names:
self.add_if_hit(top_results_all_metrics, test_label, metric_name)
def add_if_hit(self, results, test_label, metric_name):
for k in self.top_ks:
if any(map(lambda single_result: single_result['name'] == test_label, results[k][metric_name])):
self.hits[k][metric_name] += 1

45
plots.py Normal file
View File

@ -0,0 +1,45 @@
import numpy as np
from matplotlib import pyplot as plt, gridspec
def plot_two_images(a: np.ndarray, b: np.ndarray):
plt.figure(figsize=[10, 10])
plt.subplot(121)
plt.imshow(a)
plt.title("A")
plt.subplot(122)
plt.imshow(b)
plt.title("B")
plt.show()
def plot_results(source, source_anime, results, anime_faces_set, method):
cols = len(results)
plt.figure(figsize=[3*cols, 7])
gs = gridspec.GridSpec(2, cols)
plt.subplot(gs[0, cols // 2 - 1])
plt.imshow(source)
plt.title('Your image')
plt.axis('off')
plt.subplot(gs[0, cols // 2])
plt.imshow(source_anime)
plt.title('Your image in Anime style')
plt.axis('off')
plt.figtext(0.5, 0.525, "Predictions", ha="center", va="top", fontsize=16)
for idx, prediction in enumerate(results):
result_img = anime_faces_set['values'][anime_faces_set['labels'].index(prediction['name'])]
plt.subplot(gs[1, idx])
plt.imshow(result_img, interpolation='bicubic')
plt.title(f'{prediction["name"].partition(".")[0]}, score={str(round(prediction["score"], 4))}')
plt.axis('off')
plt.tight_layout()
plt.figtext(0.5, 0.01, f"Metric: {method}", ha="center", va="bottom", fontsize=12)
plt.subplots_adjust(wspace=0, hspace=0.1)
plt.show()

11
requirements-osx.txt Normal file
View File

@ -0,0 +1,11 @@
tensorflow-macos==2.11.0
easydict==1.10
numpy==1.23.1
modelscope==1.1.3
requests==2.28.2
beautifulsoup4==4.11.1
lxml==4.9.2
opencv-python==4.7.0.68
torch==1.13.1
matplotlib==3.6.3
scikit-image==0.19.3

View File

@ -9,3 +9,5 @@ opencv-python==4.7.0.68
torch==1.13.1 torch==1.13.1
matplotlib==3.6.3 matplotlib==3.6.3
scikit-image==0.19.3 scikit-image==0.19.3
yoloface==0.0.4
ipython==8.9.0