Compare commits

..

19 Commits

Author SHA1 Message Date
8aadcfb677 Zaktualizuj 'src/dimensions.py' 2021-06-21 14:16:18 +02:00
831e599e14 Zaktualizuj 'tractor.py' 2021-06-21 14:15:45 +02:00
c21203fb72 Zaktualizuj 'node.py' 2021-06-21 14:14:44 +02:00
3fd1afdaeb Zaktualizuj 'src/colors.py' 2021-06-21 14:14:19 +02:00
4f5cf361ce Zaktualizuj 'field.py' 2021-06-21 14:14:00 +02:00
e9c11d37d2 Zaktualizuj 'plant.py' 2021-06-21 14:13:44 +02:00
e77b8d03f9 Zaktualizuj 'main.py' 2021-06-21 14:13:30 +02:00
8f0a1ed075 Zaktualizuj 'main.py' 2021-06-21 14:02:50 +02:00
bd33fa3df5 GA FIX
- END of bugfixing

with Michał Malinowski
2021-06-21 04:47:16 +02:00
5ca916873d GA FIX
- FIX bug where parents would not go to next gen

with Michał Malinowski
2021-06-21 04:43:13 +02:00
361a733102 GA END
- BUGfix
- comments
- stop var

with Michał Malinowski
2021-06-21 04:04:26 +02:00
ef5c5556ef GA implementation
- ADD comments
- ADD stop function

with Michał Malinowski
2021-06-21 03:38:21 +02:00
288d3cf30a GA implementation
- ADD crossover
- ADD mutation
- ADD next_gen preparation
- Project completed (with errors)

with Michał Malinowski
2021-06-21 03:24:07 +02:00
7a14078390 GA implementation
- ADD pretty_printer method
- crossover draft

with Michał Malinowski
2021-06-21 01:56:55 +02:00
19680a0139 GA implementation
- DONE best results
- DONE parents selection

with Michał Malinowski
2021-06-21 00:38:56 +02:00
301e05268c GA implementation
- DONE fitness function
2021-06-20 23:43:57 +02:00
6c905621ca Merge pull request 'GA implementation in env' (#1) from Paweł into master
Reviewed-on: #1
2021-06-20 18:03:50 +02:00
14795cdc5e Changed method for accuracy calculation: 2021-06-20 15:04:51 +02:00
3898a3bcab Update network model structure:
Changed model from FCNN to CNN
2021-06-20 15:00:34 +02:00
11 changed files with 489 additions and 250 deletions

View File

@ -1,5 +1,3 @@
import random
import keyboard as keyboard
import field as F
@ -11,18 +9,20 @@ from src import mapschema as maps
def genetic_algorithm_setup(field):
population_units = ["", "w", "p", "s"]
# new_population to be
# TODO REPREZENTACJA OSOBNIKA - MACIERZ ROZKłADU PLONÓW
population_text = []
population_text_single = []
population_size = 10
# Populate the population_text array
for row in range(D.GSIZE):
population_text.append([])
for column in range(D.GSIZE):
population_text[row].append(random.choice(population_units))
# printer
for _ in population_text:
print(population_text)
for k in range(population_size):
population_text_single = []
for row in range(D.GSIZE):
population_text_single.append([])
for column in range(D.GSIZE):
population_text_single[row].append(random.choice(population_units))
population_text.append(population_text_single)
"""
Genetic algorithm parameters:
@ -31,75 +31,110 @@ def genetic_algorithm_setup(field):
"""
# units per population in generation
sol_per_pop = 8
num_parents_mating = 4
population_values = []
fitness_row = []
# population Fitness
for i in range(0, D.GSIZE):
for j in range(D.GSIZE):
fitness_row.append(local_fitness(field, i, j, population_text))
population_values.append(fitness_row)
best_outputs = []
num_generations = 10
num_generations = 100
num_parents = 4
# iterative var
generation = 0
while generation < num_generations:
stop = 0
# TODO WARUNEK STOPU
while generation < num_generations and stop < 3:
if keyboard.is_pressed('space'):
generation += 1
print("Generation : ", generation)
# Measuring the fitness of each chromosome in the population.
fitness = cal_pop_fitness(population_values)
# population Fitness
fitness = []
for i in range(0, population_size):
fitness.append((i, population_fitness(population_text[i], field, population_size)))
print("Fitness")
print(fitness)
# best_outputs.append(best_Output(new_population))
# The best result in the current iteration.
# print("Best result : ", best_Output(new_population))
best = sorted(fitness, key=lambda tup: tup[1], reverse=True)[0:num_parents]
# Leaderboard only
best_outputs.append(best[0][1])
# The best result in the current iteration.
print("Best result : ", best[0])
# TODO METODA WYBORU OSOBNIKA - RANKING
# Selecting the best parents in the population for mating.
parents = select_mating_pool(new_population, fitness,
num_parents_mating)
parents = [population_text[i[0]] for i in best]
parents_copy = copy.deepcopy(parents)
print("Parents")
print(parents)
for i in range(0, len(parents)):
print('\n'.join([''.join(['{:4}'.format(item) for item in row])
for row in parents[i]]))
print("")
# Generating next generation using crossover.
offspring_crossover = crossover(parents, offspring_size=(pop_size[0] - parents.shape[0], num_weights))
offspring_x = random.randint(1, D.GSIZE - 2)
offspring_y = random.randint(1, D.GSIZE - 2)
# TODO OPERATOR KRZYŻOWANIA
offspring_crossover = crossover(parents)
print("Crossover")
print(offspring_crossover)
for i in range(0, len(offspring_crossover)):
print('\n'.join([''.join(['{:4}'.format(item) for item in row])
for row in offspring_crossover[i]]))
print("")
# Adding some variations to the offspring using mutation.
offspring_mutation = mutation(offspring_crossover, num_mutations=2)
# TODO OPERATOR MUTACJI
offspring_mutation = mutation(population_units, offspring_crossover, population_size - num_parents,
num_mutations=10)
print("Mutation")
print(offspring_mutation)
for i in range(0, len(offspring_mutation)):
print('\n'.join([''.join(['{:4}'.format(item) for item in row])
for row in offspring_mutation[i]]))
print("")
# Creating the new population based on the parents and offspring.
new_population[0:parents.shape[0], :] = parents
new_population[parents.shape[0]:, :] = offspring_mutation
population_text_copy = copy.deepcopy(population_text)
unused_indexes = [i for i in range(0, population_size) if i not in [j[0] for j in best]]
# Creating next generation
population_text = []
for k in parents_copy:
population_text.append(k)
for k in range(0, len(offspring_mutation)):
population_text.append(offspring_mutation[k])
while len(population_text) < population_size:
x = random.choice(unused_indexes)
population_text.append(population_text_copy[x])
unused_indexes.remove(x)
# Getting the best solution after iterating finishing all generations.
# At first, the fitness is calculated for each solution in the final generation.
fitness = cal_pop_fitness(new_population)
# Then return the index of that solution corresponding to the best fitness.
best_match_idx = numpy.where(fitness == numpy.max(fitness))
# TODO WARUNEK STOPU
stop = 0
if generation > 10:
if best_outputs[-1] / best_outputs[-2] < 1.001:
stop += 1
if best_outputs[-1] / best_outputs[-3] < 1.001:
stop += 1
if best_outputs[-2] / best_outputs[-3] < 1.001:
stop += 1
print("Best solution : ", new_population[best_match_idx, :])
print("Best solution fitness : ", fitness[best_match_idx])
# final Fitness
fitness = []
for i in range(0, population_size):
fitness.append((i, population_fitness(population_text[i], field, population_size)))
import matplotlib.pyplot
print("Final Fitness")
print(fitness)
matplotlib.pyplot.plot(best_outputs)
matplotlib.pyplot.xlabel("Iteration")
matplotlib.pyplot.ylabel("Fitness")
matplotlib.pyplot.show()
best = sorted(fitness, key=lambda tup: tup[1])[0:num_parents]
# return best iteration of field
print("Best solution : ", )
for i in range(0, D.GSIZE):
print(population_text[best[0][0]][i])
print("Best solution fitness : ", best[0][1])
pretty_printer(best_outputs)
# TODO REALLY return best iteration of field
return 0

View File

@ -1,63 +1,47 @@
import PIL
import torch
import torchvision
import torchvision.transforms as transforms
from AI import neural_network
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from matplotlib.pyplot import imshow
import os
import PIL
import numpy as np
from matplotlib.pyplot import imshow
import neural_network
from matplotlib.pyplot import imshow
# wcześniej grinder.py
# wcześniej grader.py
# Get accuracy for neural_network model 'network_model.pth'
def NN_accuracy():
# Create the model
model = neural_network.Net()
net = neural_network.Net()
# Load state_dict
neural_network.load_network_from_structure(model)
# Create the preprocessing transformation here
transform = transforms.Compose([neural_network.Negative(), transforms.ToTensor()])
# load your image(s)
img = PIL.Image.open('../src/test/0_100.jpg')
img2 = PIL.Image.open('../src/test/1_100.jpg')
img3 = PIL.Image.open('../src/test/4_100.jpg')
img4 = PIL.Image.open('../src/test/5_100.jpg')
# Transform
input = transform(img)
input2 = transform(img2)
input3 = transform(img3)
input4 = transform(img4)
# unsqueeze batch dimension, in case you are dealing with a single image
input = input.unsqueeze(0)
input2 = input2.unsqueeze(0)
input3 = input3.unsqueeze(0)
input4 = input4.unsqueeze(0)
neural_network.load_network_from_structure(net)
# Set model to eval
model.eval()
net.eval()
# Get prediction
output = model(input)
output2 = model(input2)
output3 = model(input3)
output4 = model(input4)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(output)
index = output.cpu().data.numpy().argmax()
print(index)
folderlist = os.listdir(os.path.dirname(__file__) + "\\test")
print(output2)
index = output2.cpu().data.numpy().argmax()
print(index)
tested = 0
correct = 0
print(output3)
index = output3.cpu().data.numpy().argmax()
print(index)
for folder in folderlist:
for file in os.listdir(os.path.dirname(__file__) + "\\test\\" + folder):
if neural_network.result_from_network(net, os.path.dirname(__file__) + "\\test\\" + folder + "\\" + file) == folder:
correct += 1
tested += 1
else:
tested += 1
print(output4)
index = output4.cpu().data.numpy().argmax()
print(index)
print(correct/tested)
if __name__ == "__main__":

View File

@ -1,3 +1,8 @@
import copy
import random
import matplotlib
import matplotlib.pyplot
import numpy
import src.dimensions as D
@ -5,88 +10,94 @@ import src.dimensions as D
# Genetic Algorithm methods
def local_fitness(field, x, y, plants):
def local_fitness(field, x, y, plants_case):
soil_value = 0
if field[x][y].field_type == "soil":
soil_value = 1
else:
soil_value = 0.5
if plants[x][y] == "":
if plants_case[x][y] == "":
plant_value = 0
elif plants[x][y] == "w":
elif plants_case[x][y] == "w":
plant_value = 1
elif plants[x][y] == "p":
elif plants_case[x][y] == "p":
plant_value = 2
elif plants[x][y] == "s":
elif plants_case[x][y] == "s":
plant_value = 3
else:
plant_value = 1
neighbour_bonus = 1
if x - 1 >= 0:
if plants[x][y] == plants[x - 1][y]:
if plants_case[x][y] == plants_case[x - 1][y]:
neighbour_bonus += 1
if x + 1 < D.GSIZE:
if plants[x][y] == plants[x + 1][y]:
if plants_case[x][y] == plants_case[x + 1][y]:
neighbour_bonus += 1
if y - 1 >= 0:
if plants[x][y] == plants[x][y - 1]:
if plants_case[x][y] == plants_case[x][y - 1]:
neighbour_bonus += 1
if y + 1 < D.GSIZE:
if plants[x][y] == plants[x][y + 1]:
if plants_case[x][y] == plants_case[x][y + 1]:
neighbour_bonus += 1
# TODO * multiculture_bonus
local_fitness_value = (soil_value + plant_value) * (0.5 * neighbour_bonus + 1)
return local_fitness_value
def cal_pop_fitness(pop):
def population_fitness(population_text_local, field, population_size):
# Calculating the fitness value of each solution in the current population.
# The fitness function calulates the sum of products between each input and its corresponding weight.
fitness = sum(map(sum, pop))
fitness = []
for k in range(population_size):
population_values_single = []
population_values_single_row = []
fitness_row = []
for i in range(0, D.GSIZE):
for j in range(0, D.GSIZE):
population_values_single_row.append(local_fitness(field, i, j, population_text_local))
population_values_single.append(population_values_single_row)
for i in range(D.GSIZE):
fitness_row.append(sum(population_values_single[i]))
fitness = sum(fitness_row)
return fitness
def select_mating_pool(pop, fitness, num_parents):
# Selecting the best individuals in the current generation as parents for producing the offspring of the next generation.
parents = numpy.empty((num_parents, pop.shape[1]))
for parent_num in range(num_parents):
max_fitness_idx = numpy.where(fitness == numpy.max(fitness))
max_fitness_idx = max_fitness_idx[0][0]
parents[parent_num, :] = pop[max_fitness_idx, :]
fitness[max_fitness_idx] = -99999999999
return parents
def crossover(local_parents):
ret = []
for i in range(0, len(local_parents)):
child = copy.deepcopy(local_parents[i])
# Vertical randomization
width = random.randint(1, D.GSIZE // len(local_parents)) # width of stripes
indexes_parents = numpy.random.permutation(range(0, len(local_parents))) # sorting of stripes
beginning = random.randint(0, len(local_parents[0]) - width * len(
local_parents)) # point we start putting the stripes from
for x in indexes_parents:
child[beginning:beginning + width] = local_parents[x][beginning:beginning + width]
beginning += width
ret.append(child)
return ret
def crossover(parents, offspring_size):
offspring = numpy.empty(offspring_size)
# The point at which crossover takes place between two parents. Usually, it is at the center.
crossover_point = numpy.uint8(offspring_size[1] / 2)
def mutation(population_units, offspring_crossover, num_mutants, num_mutations=10):
for case in range(0, len(offspring_crossover)):
for mutation in range(0, num_mutations):
mutation_x = random.randint(0, D.GSIZE - 1)
mutation_y = random.randint(0, D.GSIZE - 1)
mutation_value = random.choice(population_units)
offspring_crossover[case][mutation_x][mutation_y] = mutation_value
num_mutants -= 1
for k in range(offspring_size[0]):
# Index of the first parent to mate.
parent1_idx = k % parents.shape[0]
# Index of the second parent to mate.
parent2_idx = (k + 1) % parents.shape[0]
# The new offspring will have its first half of its genes taken from the first parent.
offspring[k, 0:crossover_point] = parents[parent1_idx, 0:crossover_point]
# The new offspring will have its second half of its genes taken from the second parent.
offspring[k, crossover_point:] = parents[parent2_idx, crossover_point:]
return offspring
def mutation(offspring_crossover, num_mutations=1):
mutations_counter = numpy.uint8(offspring_crossover.shape[1] / num_mutations)
# Mutation changes a number of genes as defined by the num_mutations argument. The changes are random.
for idx in range(offspring_crossover.shape[0]):
gene_idx = mutations_counter - 1
for mutation_num in range(num_mutations):
# The random value to be added to the gene.
random_value = numpy.random.uniform(-1.0, 1.0, 1)
offspring_crossover[idx, gene_idx] = offspring_crossover[idx, gene_idx] + random_value
gene_idx = gene_idx + mutations_counter
return offspring_crossover
def best_Output(new_population):
return numpy.max(numpy.sum(new_population * equation_inputs, axis=1))
def pretty_printer(best_outputs):
matplotlib.pyplot.plot(best_outputs)
matplotlib.pyplot.xlabel("Iteration")
matplotlib.pyplot.ylabel("Fitness")
matplotlib.pyplot.show()

View File

@ -1,69 +1,76 @@
import PIL
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np
from matplotlib.pyplot import imshow
import os
import PIL
import numpy as np
from matplotlib.pyplot import imshow
def to_negative(img):
img = PIL.ImageOps.invert(img)
return img
class Negative(object):
def __init__(self):
pass
def __call__(self, img):
return to_negative(img)
def plotdigit(image):
img = np.reshape(image, (-1, 100))
imshow(img, cmap='Greys')
transform = transforms.Compose([Negative(), transforms.ToTensor()])
train_set = torchvision.datasets.ImageFolder(root='../src/train', transform=transform)
classes = ("apple", "potato")
train_set = torchvision.datasets.ImageFolder(root='train', transform=transform)
classes = ("pepper", "potato", "strawberry", "tomato")
BATCH_SIZE = 2
BATCH_SIZE = 4
train_loader = torch.utils.data.DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(3 * 100 * 100, 512),
super().__init__()
self.network = nn.Sequential(
nn.Conv2d(3, 32, kernel_size=3, padding=1), #3 channels to 32 channels
nn.ReLU(),
nn.Linear(512, 512),
nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Linear(512, 2),
nn.ReLU()
)
self.linear_relu_stack = self.linear_relu_stack.to(device)
nn.MaxPool2d(2, 2), # output: 64 channels x 50 x 50 image size - decrease
def forward(self, x):
x = self.flatten(x).to(device)
logits = self.linear_relu_stack(x).to(device)
return logits
nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1), #increase power of model
nn.ReLU(),
nn.MaxPool2d(2, 2), # output: 128 x 25 x 25
nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2d(5, 5), # output: 256 x 5 x 5
nn.Flatten(), #a single vector 256*5*5,
nn.Linear(256*5*5, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512, 4))
def forward(self, xb):
return self.network(xb)
def training_network():
net = Net()
net = net.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
for epoch in range(4):
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
@ -72,34 +79,33 @@ def training_network():
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 2000 == 1999:
if i % 200 == 199:
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss))
running_loss = 0.0
print("Finished training")
save_network_to_file(net)
def result_from_network(net, loaded_image):
image = PIL.Image.open(loaded_image)
pil_to_tensor = transforms.ToTensor()(image.convert("RGB")).unsqueeze_(0)
outputs = net(pil_to_tensor.to(device))
pil_to_tensor = transforms.Compose([Negative(), transforms.ToTensor()])(image.convert("RGB")).unsqueeze_(0)
outputs = net(pil_to_tensor)
return classes[torch.max(outputs, 1)[1]]
def save_network_to_file(network):
torch.save(network.state_dict(), 'network_model.pth')
print("Network saved to file")
def load_network_from_structure(network):
network.load_state_dict(torch.load('network_model.pth'))
# Create network_model.pth
if __name__ == "__main__":
print(torch.cuda.is_available())
training_network()
training_network()

View File

@ -1,9 +1,7 @@
import pygame
from src.colors import *
from src.dimensions import *
class Field(pygame.sprite.Sprite):
def __init__(self, row, column, field_type):
super(Field, self).__init__()
@ -26,22 +24,62 @@ class Field(pygame.sprite.Sprite):
self.position = [row, column]
self.hydration = 0
self.planted = 0
self.fertility = 1
self.fertility = 0
self.tractor_there = False
def hydrate(self):
if self.field_type == "soil" and self.hydration <= 5:
self.hydration += 1
# color field to it's hydration value
self.surf.fill(eval('BROWN' + str(self.hydration)))
self.hydration += 1
if self.fertility == 1:
if self.hydration == 0:
self.surf.fill(REDDISH0)
self.fertility = 0
if self.hydration == 1:
self.surf.fill(REDDISH1)
if self.hydration == 2:
self.surf.fill(REDDISH2)
if self.hydration == 3:
self.surf.fill(REDDISH3)
if self.hydration == 4 or self.hydration == 5:
self.surf.fill(REDDISH4)
else:
if self.hydration == 0:
self.surf.fill(BROWN0)
if self.hydration == 1:
self.surf.fill(BROWN1)
if self.hydration == 2:
self.surf.fill(BROWN2)
if self.hydration == 3:
self.surf.fill(BROWN3)
if self.hydration == 4 or self.hydration == 5:
self.surf.fill(BROWN4)
def dehydrate(self):
if self.field_type == "soil" and self.hydration > 0:
self.hydration -= 1
# color field to it's hydration value
self.surf.fill(eval('BROWN' + str(self.hydration)))
if self.field_type == "soil" and self.hydration > 0:
self.hydration -= 1
if self.fertility == 1:
if self.hydration == 0:
self.surf.fill(REDDISH0)
self.fertility = 0
if self.hydration == 1:
self.surf.fill(REDDISH1)
if self.hydration == 2:
self.surf.fill(REDDISH2)
if self.hydration == 3:
self.surf.fill(REDDISH3)
if self.hydration == 4 or self.hydration == 5:
self.surf.fill(REDDISH4)
else:
if self.hydration == 0:
self.surf.fill(BROWN0)
if self.hydration == 1:
self.surf.fill(BROWN1)
if self.hydration == 2:
self.surf.fill(BROWN2)
if self.hydration == 3:
self.surf.fill(BROWN3)
if self.hydration == 4 or self.hydration == 5:
self.surf.fill(BROWN4)
def free(self):
self.planted = 0

43
main.py
View File

@ -10,12 +10,15 @@ from pygame.locals import (
QUIT
)
# Import other files from project
import field as F
import node as N
import plant as P
import src.colors as C
import src.dimensions as D
import AI.GeneticAlgorithm as ga
import AI.neural_network as nn
import tractor as T
from src import mapschema as maps
@ -44,6 +47,16 @@ if __name__ == "__main__":
field[row].append(fieldbit)
# genetic_algorithm_setup(field)
num_of_plants = 0
plant_pops = []
best_plant_pop = []
goal_gen = 100
best_plant_pop, plant_pops, num_of_plants, fitness = ga.genetic_algorithm_setup(field, plant_pops, goal_gen)
net = nn.Net()
nn.load_network_from_structure(net)
net.eval()
# Create Tractor object
tractor = T.Tractor(field, [0, 0])
@ -58,9 +71,11 @@ if __name__ == "__main__":
for row in range(D.GSIZE):
plants.append([])
for column in range(D.GSIZE):
if mapschema[column][row] != 0:
plantbit = P.Plant(field[row][column], mapschema[column][row])
if best_plant_pop[column][row] != "":
plantbit = P.Plant(field[row][column], best_plant_pop[column][row])
plants[row].append(plantbit)
else:
plants[row].append(0)
# Create list for tractor instructions
path = []
@ -77,7 +92,6 @@ if __name__ == "__main__":
# Main loop
while RUNNING:
# Look at every event in the queue
for event in pygame.event.get():
# Did the user hit a key?
if event.type == KEYDOWN:
@ -105,19 +119,11 @@ if __name__ == "__main__":
tractor.rotate_right()
elif path[0] == "hydrate":
tractor.hydrate(field)
elif path[0] == "fertilize":
if plants[tractor.position[1]][tractor.position[0]]:
tractor.fertilize(field, plants, nn.result_from_network(net, plants[tractor.position[0]][tractor.position[1]].testimage))
path.pop(0)
# Get all keys pressed at a time CURRENTLY UNUSED
pressed_keys = pygame.key.get_pressed()
# control tractor with pressed keys CURRENTLY UNUSED
if pressed_keys[K_UP]:
tractor.move()
elif pressed_keys[K_LEFT]:
tractor.rotate_left()
elif pressed_keys[K_RIGHT]:
tractor.rotate_right()
# Set the screen background
screen.fill(C.DBROWN)
@ -133,9 +139,10 @@ if __name__ == "__main__":
# Plants grow with every 10th tick, then they are drawn
for row in plants:
for plant in row:
plant.tick()
plant.grow()
screen.blit(plant.surf, plant.rect)
if plant != 0:
plant.tick()
plant.grow()
screen.blit(plant.surf, plant.rect)
# Field are drying with every 100th tick
if TICKER == 0:
@ -150,4 +157,4 @@ if __name__ == "__main__":
pygame.display.flip()
# Ensure program maintains a stable framerate
clock.tick(8)
clock.tick(35)

56
node.py
View File

@ -137,10 +137,12 @@ class Node:
closedList.append(currentNode)
if currentNode.field[currentNode.position[0]][currentNode.position[1]].planted and \
currentNode.field[currentNode.position[0]][currentNode.position[1]].field_type == "soil" and \
currentNode.field[currentNode.position[0]][currentNode.position[1]].hydration < 2:
path = []
for _ in range(currentNode.field[currentNode.position[0]][currentNode.position[1]].hydration, 4):
path.append("hydrate")
path.append("fertilize")
current = currentNode
while current is not None:
path.append(current.action)
@ -174,3 +176,57 @@ class Node:
continue
heapq.heappush(openList, child)
def findPathToPlantSpot(self, goals):
startNode = Node(self.field, self.position, self.rotation)
openList = []
closedList = []
startNode.parent = None
heapq.heappush(openList, startNode)
while len(openList) > 0:
currentNode = heapq.heappop(openList)
closedList.append(currentNode)
if not currentNode.field[currentNode.position[0]][currentNode.position[1]].planted and \
goals[currentNode.position[0]][currentNode.position[1]] != "":
path = []
path.append("plant")
current = currentNode
while current is not None:
path.append(current.action)
current = current.parent
return path[::-1]
children = succesor(currentNode)
perm = 0
for child in children:
for closedChild in closedList:
if child.position == closedChild.position and child.rotation == closedChild.rotation and child.action == closedChild.action:
perm = 1
break
if perm == 1:
perm = 0
continue
child.parent = currentNode
child.startCost = currentNode.startCost + child.field[child.position[0]][child.position[1]].moveCost
child.heuristic = abs(startNode.position[0] - child.position[0]) + abs(
startNode.position[1] - child.position[1])
child.totalCost = child.startCost + child.heuristic
for openNode in openList:
if child.position == openNode.position and child.rotation == openNode.rotation and child.action == openNode.action and child.startCost >= openNode.startCost:
perm = 1
break
if perm == 1:
perm = 0
continue
heapq.heappush(openList, child)

110
plant.py
View File

@ -1,29 +1,32 @@
import os
import random
from AI.decision_tree import *
from src.dimensions import *
from src.sprites import *
from src.colors import *
path = os.path.dirname(__file__) + "\\src\\test\\"
class Plant(pygame.sprite.Sprite):
def __init__(self, field, species):
super(Plant, self).__init__()
self.species = species
if self.species == "wheat":
self.growth_speed = 1.5
self.humidity_needed = 2
if self.species == "tomato":
self.img0 = wheat_img_0
self.img1 = wheat_img_1
self.img2 = wheat_img_2
self.img3 = wheat_img_3
elif self.species == "potato":
self.growth_speed = 1
self.humidity_needed = 1
self.img0 = potato_img_0
self.img1 = potato_img_1
self.img2 = potato_img_2
self.img3 = potato_img_3
elif self.species == "strawberry":
self.growth_speed = 0.8
self.humidity_needed = 1
self.img0 = strawberry_img_0
self.img1 = strawberry_img_1
self.img2 = strawberry_img_2
self.img3 = strawberry_img_3
elif self.species == "pepper":
self.img0 = strawberry_img_0
self.img1 = strawberry_img_1
self.img2 = strawberry_img_2
@ -38,9 +41,94 @@ class Plant(pygame.sprite.Sprite):
field.planted = True
self.tickscount = 0
self.ticks = 0
self.path = path + self.species + "\\"
self.testimage = self.path + random.choice(os.listdir(self.path))
def dtree(self):
decision_tree(self)
if self.field.hydration == 4:
if self.is_healthy == 1:
if self.field.tractor_there == 0:
if self.ticks == 0:
return 0
elif self.ticks == 1:
return 1
elif self.field.tractor_there == 1:
return 0
elif self.is_healthy == 0:
return 0
elif self.field.hydration == 2:
if self.species == "pepper":
if self.ticks == 1:
if self.is_healthy == 1:
return 1
elif self.is_healthy == 0:
return 0
elif self.ticks == 0:
return 0
elif self.species == "potato":
return 0
elif self.species == "tomato":
return 0
elif self.species == "strawberry":
return 0
elif self.field.hydration == 1:
if self.species == "potato":
return 0
elif self.species == "strawberry":
if self.ticks == 1:
return -1
elif self.ticks == 0:
return 0
elif self.species == "tomato":
return 0
elif self.species == "pepper":
if self.is_healthy == 0:
return 0
elif self.is_healthy == 1:
if self.field.tractor_there == 0:
if self.ticks == 0:
return 0
elif self.ticks == 1:
return 1
elif self.field.tractor_there == 1:
return 0
elif self.field.hydration == 3:
if self.ticks == 1:
if self.field.tractor_there == 0:
if self.is_healthy == 1:
if self.species == "potato":
if self.field.fertility == 1:
return 1
elif self.field.fertility == 0:
return 0
elif self.species == "strawberry":
return 1
elif self.species == "pepper":
return 1
elif self.species == "tomato":
return 1
elif self.is_healthy == 0:
return 0
elif self.field.tractor_there == 1:
return 0
elif self.ticks == 0:
return 0
elif self.field.hydration == 5:
if self.field.tractor_there == 1:
return 0
elif self.field.tractor_there == 0:
if self.is_healthy == 0:
return 0
elif self.is_healthy == 1:
if self.ticks == 1:
return 1
elif self.ticks == 0:
return 0
elif self.field.hydration == 0:
if self.ticks == 0:
return 0
elif self.ticks == 1:
return -1
def update(self):
if self.growth == 0:
@ -63,6 +151,7 @@ class Plant(pygame.sprite.Sprite):
self.growth = 4
if self.growth < 0:
self.growth = 0
self.update()
def tick(self):
@ -70,3 +159,6 @@ class Plant(pygame.sprite.Sprite):
if self.tickscount >= 25:
self.tickscount = 0
self.ticks = 1
def remove(self):
self.field.planted = False

View File

@ -7,6 +7,14 @@ BROWN2 = (140, 110, 55)
BROWN3 = (110, 85, 40)
BROWN4 = (80, 60, 20)
BROWN5 = (80, 60, 20)
REDDISH0 = (230, 150, 90)
REDDISH1 = (210, 130, 70)
REDDISH2 = (190, 110, 55)
REDDISH3 = (160, 85, 40)
REDDISH4 = (130, 60, 20)
REDDISH5 = (130, 60, 20)
DBROWN = (65, 50, 20)
LBROWN = (108, 97, 62)
BLUE = (18, 93, 156)

View File

@ -2,12 +2,12 @@
GSIZE = 10
# This sets the WIDTH and HEIGHT of each grid location
WIDTH = 35
HEIGHT = 35
WIDTH = 80
HEIGHT = 80
# This sets the margin between each cell
MARGIN = 5
# Window size
SCREEN_WIDTH = GSIZE * (WIDTH + MARGIN) + MARGIN
SCREEN_HEIGHT = GSIZE * (HEIGHT + MARGIN) + MARGIN
SCREEN_HEIGHT = GSIZE * (HEIGHT + MARGIN) + MARGIN + 100

View File

@ -1,7 +1,6 @@
from pygame.locals import (K_c)
from src.dimensions import *
from src.sprites import *
from plant import *
class Tractor(pygame.sprite.Sprite):
@ -73,10 +72,13 @@ class Tractor(pygame.sprite.Sprite):
field[self.position[0]][self.position[1]].hydrate()
def cut(self, field, pressed_keys):
if pressed_keys[K_c]:
field[self.position[0]][self.position[1]].free()
field[self.position[0]][self.position[1]].free()
def plant(self, field, plant, pressed_keys):
if field.planted == 0:
field.planted = plant
plant.field = field
def plant(self, plant_map, plants):
print(plant_map[self.position[0]][self.position[1]])
plant = Plant(self.field[self.position[0]][self.position[1]], plant_map[self.position[0]][self.position[1]])
plants.append(plant)
def fertilize(self, field, plants, type):
if plants[self.position[0]][self.position[1]].species == type:
field[self.position[0]][self.position[1]].fertility = 1