neural_network #4
Binary file not shown.
@ -1,5 +1,4 @@
|
|||||||
import os
|
import os
|
||||||
import numpy as np
|
|
||||||
import torch
|
import torch
|
||||||
import glob
|
import glob
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
@ -24,23 +23,18 @@ test_dir = os.path.join(temp_path, test_dir)
|
|||||||
|
|
||||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
#Transforms
|
|
||||||
transformer = transforms.Compose([
|
transformer = transforms.Compose([
|
||||||
transforms.Resize((150,150)),
|
transforms.Resize((150,150)),
|
||||||
transforms.RandomHorizontalFlip(),
|
transforms.RandomHorizontalFlip(),
|
||||||
transforms.ToTensor(), #0-255 to 0-1, numpy to tensors
|
transforms.ToTensor(),
|
||||||
transforms.Normalize([0.5,0.5,0.5], # 0-1 to [-1,1] , formula (x-mean)/std
|
transforms.Normalize([0.5,0.5,0.5],
|
||||||
[0.5,0.5,0.5])
|
[0.5,0.5,0.5])
|
||||||
])
|
])
|
||||||
|
|
||||||
#Dataloader
|
train_path = r'C:\Users\User\PycharmProjects\Super-Saper222\images\learning\training\training'
|
||||||
|
test_path = r'C:\Users\User\PycharmProjects\Super-Saper222\images\learning\test\test'
|
||||||
|
pred_path = r'C:\Users\User\PycharmProjects\Super-Saper222\images\learning\prediction\prediction'
|
||||||
|
|
||||||
#Path for training and testing directory
|
|
||||||
train_path = r'D:\Documents\Studia\Semestr-4\sztuczna-inteligencja\super-saper\images\learning\training\training'
|
|
||||||
test_path = r'D:\Documents\Studia\Semestr-4\sztuczna-inteligencja\super-saper\images\learning\test\test'
|
|
||||||
pred_path = r'D:\Documents\Studia\Semestr-4\sztuczna-inteligencja\super-saper\images\learning\prediction\prediction'
|
|
||||||
|
|
||||||
print(train_path)
|
|
||||||
|
|
||||||
train_loader = DataLoader(
|
train_loader = DataLoader(
|
||||||
torchvision.datasets.ImageFolder(train_path, transform=transformer),
|
torchvision.datasets.ImageFolder(train_path, transform=transformer),
|
||||||
@ -51,13 +45,11 @@ test_loader=DataLoader(
|
|||||||
batch_size=32, shuffle=True
|
batch_size=32, shuffle=True
|
||||||
)
|
)
|
||||||
|
|
||||||
#categories
|
|
||||||
root=pathlib.Path(train_path)
|
root=pathlib.Path(train_path)
|
||||||
classes = sorted([j.name.split('/')[-1] for j in root.iterdir()])
|
classes = sorted([j.name.split('/')[-1] for j in root.iterdir()])
|
||||||
|
|
||||||
model = Net(num_classes=6).to(device)
|
model = Net(num_classes=6).to(device)
|
||||||
|
|
||||||
#Optmizer and loss function
|
|
||||||
optimizer = Adam(model.parameters(),lr=1e-3,weight_decay=0.0001)
|
optimizer = Adam(model.parameters(),lr=1e-3,weight_decay=0.0001)
|
||||||
loss_fn = nn.CrossEntropyLoss()
|
loss_fn = nn.CrossEntropyLoss()
|
||||||
|
|
||||||
@ -75,10 +67,9 @@ def train(dataloader, model, loss_fn, optimizer):
|
|||||||
for batch, (X, y) in enumerate(dataloader):
|
for batch, (X, y) in enumerate(dataloader):
|
||||||
X, y = X.to(device), y.to(device)
|
X, y = X.to(device), y.to(device)
|
||||||
|
|
||||||
# Compute prediction error
|
|
||||||
pred = model(X.float())
|
pred = model(X.float())
|
||||||
loss = loss_fn(pred, y)
|
loss = loss_fn(pred, y)
|
||||||
# Backpropagation
|
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
@ -92,12 +83,14 @@ def test(dataloader, model):
|
|||||||
size = len(dataloader.dataset)
|
size = len(dataloader.dataset)
|
||||||
model.eval()
|
model.eval()
|
||||||
test_loss, correct = 0, 0
|
test_loss, correct = 0, 0
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
for X, y in dataloader:
|
for X, y in dataloader:
|
||||||
X, y = X.to(device), y.to(device)
|
X, y = X.to(device), y.to(device)
|
||||||
pred = model(X.float())
|
pred = model(X.float())
|
||||||
test_loss += loss_fn(pred, y).item()
|
test_loss += loss_fn(pred, y).item()
|
||||||
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
||||||
|
|
||||||
test_loss /= size
|
test_loss /= size
|
||||||
correct /= size
|
correct /= size
|
||||||
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
||||||
@ -107,29 +100,40 @@ def prediction1(classes, img_path, model, transformer):
|
|||||||
image = Image.open(img_path).convert('RGB')
|
image = Image.open(img_path).convert('RGB')
|
||||||
image_tensor = transformer(image).float()
|
image_tensor = transformer(image).float()
|
||||||
image_tensor = image_tensor.unsqueeze_(0)
|
image_tensor = image_tensor.unsqueeze_(0)
|
||||||
|
|
||||||
if torch.cuda.is_available():
|
if torch.cuda.is_available():
|
||||||
image_tensor.cuda()
|
image_tensor.cuda()
|
||||||
input = Variable(image_tensor)
|
input = Variable(image_tensor)
|
||||||
output = model(input)
|
output = model(input)
|
||||||
|
|
||||||
index = output.data.numpy().argmax()
|
index = output.data.numpy().argmax()
|
||||||
pred = classes[index]
|
pred = classes[index]
|
||||||
return pred
|
return pred
|
||||||
|
|
||||||
transformer1 = transforms.Compose([transforms.Resize((150, 150)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
transformer1 = transforms.Compose([transforms.Resize((150, 150)),
|
||||||
|
transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
||||||
|
|
||||||
|
#creating new model
|
||||||
|
|
||||||
# for t in range(9):
|
# for t in range(9):
|
||||||
# print(f"Epoch {t+1}\n-------------------------------")
|
# print(f"Epoch {t+1}\n-------------------------------")
|
||||||
# train(train_loader, model, loss_fn, optimizer)
|
# train(train_loader, model, loss_fn, optimizer)
|
||||||
# test(test_loader, model)
|
# test(test_loader, model)
|
||||||
# print("Done!")
|
# print("Done!")
|
||||||
|
# torch.save(model.state_dict(), 'mine_recognizer.model')
|
||||||
|
|
||||||
checkpoint = torch.load(os.path.join('.', 'best_checkpoint.model'))
|
|
||||||
|
#checking work of new model
|
||||||
|
|
||||||
|
checkpoint = torch.load(os.path.join('.', 'mine_recognizer.model'))
|
||||||
model = Net(num_classes=6)
|
model = Net(num_classes=6)
|
||||||
model.load_state_dict(checkpoint)
|
model.load_state_dict(checkpoint)
|
||||||
model.eval()
|
model.eval()
|
||||||
|
|
||||||
transformer1 = transforms.Compose([transforms.Resize((150, 150)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
transformer1 = transforms.Compose([transforms.Resize((150, 150)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
||||||
images_path = glob.glob(pred_path+'/*.*')
|
images_path = glob.glob(pred_path+'/*.*')
|
||||||
pred_dict = {}
|
pred_dict = {}
|
||||||
|
|
||||||
for i in images_path:
|
for i in images_path:
|
||||||
pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1)
|
pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1)
|
||||||
print(pred_dict)
|
print(pred_dict)
|
||||||
@ -144,52 +148,3 @@ for i in images_path:
|
|||||||
pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1)
|
pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1)
|
||||||
print(pred_dict)
|
print(pred_dict)
|
||||||
|
|
||||||
# for epoch in range(num_epochs):
|
|
||||||
#
|
|
||||||
# # Evaluation and training on training dataset
|
|
||||||
# model.train()
|
|
||||||
# train_accuracy = 0.0
|
|
||||||
# train_loss = 0.0
|
|
||||||
#
|
|
||||||
# for i, (images, labels) in enumerate(train_loader):
|
|
||||||
# if torch.cuda.is_available():
|
|
||||||
# images = Variable(images.cuda())
|
|
||||||
# labels = Variable(labels.cuda())
|
|
||||||
#
|
|
||||||
# optimizer.zero_grad()
|
|
||||||
#
|
|
||||||
# outputs = model(images)
|
|
||||||
# loss = loss_function(outputs, labels)
|
|
||||||
# loss.backward()
|
|
||||||
# optimizer.step()
|
|
||||||
#
|
|
||||||
# train_loss += loss.cpu().data * images.size(0)
|
|
||||||
# _, prediction = torch.max(outputs.data, 1)
|
|
||||||
#
|
|
||||||
# train_accuracy += int(torch.sum(prediction == labels.data))
|
|
||||||
#
|
|
||||||
# train_accuracy = train_accuracy / train_count
|
|
||||||
# train_loss = train_loss / train_count
|
|
||||||
#
|
|
||||||
# # Evaluation on testing dataset
|
|
||||||
# model.eval()
|
|
||||||
#
|
|
||||||
# test_accuracy = 0.0
|
|
||||||
# for i, (images, labels) in enumerate(test_loader):
|
|
||||||
# if torch.cuda.is_available():
|
|
||||||
# images = Variable(images.cuda())
|
|
||||||
# labels = Variable(labels.cuda())
|
|
||||||
#
|
|
||||||
# outputs = model(images)
|
|
||||||
# _, prediction = torch.max(outputs.data, 1)
|
|
||||||
# test_accuracy += int(torch.sum(prediction == labels.data))
|
|
||||||
#
|
|
||||||
# test_accuracy = test_accuracy / test_count
|
|
||||||
#
|
|
||||||
# print('Epoch: ' + str(epoch) + ' Train Loss: ' + str(train_loss) + ' Train Accuracy: ' + str(
|
|
||||||
# train_accuracy) + ' Test Accuracy: ' + str(test_accuracy))
|
|
||||||
#
|
|
||||||
# # Save the best model
|
|
||||||
# if test_accuracy > best_accuracy:
|
|
||||||
# torch.save(model.state_dict(), 'best_checkpoint.model')
|
|
||||||
# best_accuracy = test_accuracy
|
|
BIN
src/machine_learning/neural_network/mine_recognizer.model
Normal file
BIN
src/machine_learning/neural_network/mine_recognizer.model
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user