neural_network #4
Binary file not shown.
@ -1,5 +1,4 @@
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
import glob
|
||||
import torch.nn as nn
|
||||
@ -24,23 +23,18 @@ test_dir = os.path.join(temp_path, test_dir)
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
#Transforms
|
||||
transformer = transforms.Compose([
|
||||
transforms.Resize((150,150)),
|
||||
transforms.RandomHorizontalFlip(),
|
||||
transforms.ToTensor(), #0-255 to 0-1, numpy to tensors
|
||||
transforms.Normalize([0.5,0.5,0.5], # 0-1 to [-1,1] , formula (x-mean)/std
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize([0.5,0.5,0.5],
|
||||
[0.5,0.5,0.5])
|
||||
])
|
||||
|
||||
#Dataloader
|
||||
train_path = r'C:\Users\User\PycharmProjects\Super-Saper222\images\learning\training\training'
|
||||
test_path = r'C:\Users\User\PycharmProjects\Super-Saper222\images\learning\test\test'
|
||||
pred_path = r'C:\Users\User\PycharmProjects\Super-Saper222\images\learning\prediction\prediction'
|
||||
|
||||
#Path for training and testing directory
|
||||
train_path = r'D:\Documents\Studia\Semestr-4\sztuczna-inteligencja\super-saper\images\learning\training\training'
|
||||
test_path = r'D:\Documents\Studia\Semestr-4\sztuczna-inteligencja\super-saper\images\learning\test\test'
|
||||
pred_path = r'D:\Documents\Studia\Semestr-4\sztuczna-inteligencja\super-saper\images\learning\prediction\prediction'
|
||||
|
||||
print(train_path)
|
||||
|
||||
train_loader = DataLoader(
|
||||
torchvision.datasets.ImageFolder(train_path, transform=transformer),
|
||||
@ -51,13 +45,11 @@ test_loader=DataLoader(
|
||||
batch_size=32, shuffle=True
|
||||
)
|
||||
|
||||
#categories
|
||||
root=pathlib.Path(train_path)
|
||||
classes = sorted([j.name.split('/')[-1] for j in root.iterdir()])
|
||||
|
||||
model = Net(num_classes=6).to(device)
|
||||
|
||||
#Optmizer and loss function
|
||||
optimizer = Adam(model.parameters(),lr=1e-3,weight_decay=0.0001)
|
||||
loss_fn = nn.CrossEntropyLoss()
|
||||
|
||||
@ -75,10 +67,9 @@ def train(dataloader, model, loss_fn, optimizer):
|
||||
for batch, (X, y) in enumerate(dataloader):
|
||||
X, y = X.to(device), y.to(device)
|
||||
|
||||
# Compute prediction error
|
||||
pred = model(X.float())
|
||||
loss = loss_fn(pred, y)
|
||||
# Backpropagation
|
||||
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
@ -92,12 +83,14 @@ def test(dataloader, model):
|
||||
size = len(dataloader.dataset)
|
||||
model.eval()
|
||||
test_loss, correct = 0, 0
|
||||
|
||||
with torch.no_grad():
|
||||
for X, y in dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
pred = model(X.float())
|
||||
test_loss += loss_fn(pred, y).item()
|
||||
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
||||
|
||||
test_loss /= size
|
||||
correct /= size
|
||||
print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")
|
||||
@ -107,29 +100,40 @@ def prediction1(classes, img_path, model, transformer):
|
||||
image = Image.open(img_path).convert('RGB')
|
||||
image_tensor = transformer(image).float()
|
||||
image_tensor = image_tensor.unsqueeze_(0)
|
||||
|
||||
if torch.cuda.is_available():
|
||||
image_tensor.cuda()
|
||||
input = Variable(image_tensor)
|
||||
output = model(input)
|
||||
|
||||
index = output.data.numpy().argmax()
|
||||
pred = classes[index]
|
||||
return pred
|
||||
|
||||
transformer1 = transforms.Compose([transforms.Resize((150, 150)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
||||
transformer1 = transforms.Compose([transforms.Resize((150, 150)),
|
||||
transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
||||
|
||||
#creating new model
|
||||
|
||||
# for t in range(9):
|
||||
# print(f"Epoch {t+1}\n-------------------------------")
|
||||
# train(train_loader, model, loss_fn, optimizer)
|
||||
# test(test_loader, model)
|
||||
# print("Done!")
|
||||
# torch.save(model.state_dict(), 'mine_recognizer.model')
|
||||
|
||||
checkpoint = torch.load(os.path.join('.', 'best_checkpoint.model'))
|
||||
|
||||
#checking work of new model
|
||||
|
||||
checkpoint = torch.load(os.path.join('.', 'mine_recognizer.model'))
|
||||
model = Net(num_classes=6)
|
||||
model.load_state_dict(checkpoint)
|
||||
model.eval()
|
||||
|
||||
transformer1 = transforms.Compose([transforms.Resize((150, 150)), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
||||
images_path = glob.glob(pred_path+'/*.*')
|
||||
pred_dict = {}
|
||||
|
||||
for i in images_path:
|
||||
pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1)
|
||||
print(pred_dict)
|
||||
@ -144,52 +148,3 @@ for i in images_path:
|
||||
pred_dict[i[i.rfind('/') + 1:]] = prediction1(classes, i, model, transformer1)
|
||||
print(pred_dict)
|
||||
|
||||
# for epoch in range(num_epochs):
|
||||
#
|
||||
# # Evaluation and training on training dataset
|
||||
# model.train()
|
||||
# train_accuracy = 0.0
|
||||
# train_loss = 0.0
|
||||
#
|
||||
# for i, (images, labels) in enumerate(train_loader):
|
||||
# if torch.cuda.is_available():
|
||||
# images = Variable(images.cuda())
|
||||
# labels = Variable(labels.cuda())
|
||||
#
|
||||
# optimizer.zero_grad()
|
||||
#
|
||||
# outputs = model(images)
|
||||
# loss = loss_function(outputs, labels)
|
||||
# loss.backward()
|
||||
# optimizer.step()
|
||||
#
|
||||
# train_loss += loss.cpu().data * images.size(0)
|
||||
# _, prediction = torch.max(outputs.data, 1)
|
||||
#
|
||||
# train_accuracy += int(torch.sum(prediction == labels.data))
|
||||
#
|
||||
# train_accuracy = train_accuracy / train_count
|
||||
# train_loss = train_loss / train_count
|
||||
#
|
||||
# # Evaluation on testing dataset
|
||||
# model.eval()
|
||||
#
|
||||
# test_accuracy = 0.0
|
||||
# for i, (images, labels) in enumerate(test_loader):
|
||||
# if torch.cuda.is_available():
|
||||
# images = Variable(images.cuda())
|
||||
# labels = Variable(labels.cuda())
|
||||
#
|
||||
# outputs = model(images)
|
||||
# _, prediction = torch.max(outputs.data, 1)
|
||||
# test_accuracy += int(torch.sum(prediction == labels.data))
|
||||
#
|
||||
# test_accuracy = test_accuracy / test_count
|
||||
#
|
||||
# print('Epoch: ' + str(epoch) + ' Train Loss: ' + str(train_loss) + ' Train Accuracy: ' + str(
|
||||
# train_accuracy) + ' Test Accuracy: ' + str(test_accuracy))
|
||||
#
|
||||
# # Save the best model
|
||||
# if test_accuracy > best_accuracy:
|
||||
# torch.save(model.state_dict(), 'best_checkpoint.model')
|
||||
# best_accuracy = test_accuracy
|
BIN
src/machine_learning/neural_network/mine_recognizer.model
Normal file
BIN
src/machine_learning/neural_network/mine_recognizer.model
Normal file
Binary file not shown.
Loading…
Reference in New Issue
Block a user