neural_network #4
10
src/main.py
10
src/main.py
@ -63,12 +63,6 @@ def main():
|
|||||||
|
|
||||||
running = True
|
running = True
|
||||||
|
|
||||||
# ruchy agenta:
|
|
||||||
# 0 - up
|
|
||||||
# 1 - right
|
|
||||||
# 2 - down
|
|
||||||
# 3 - left
|
|
||||||
|
|
||||||
while running:
|
while running:
|
||||||
for event in pg.fastevent.get():
|
for event in pg.fastevent.get():
|
||||||
if event.type == pg.QUIT:
|
if event.type == pg.QUIT:
|
||||||
@ -76,9 +70,9 @@ def main():
|
|||||||
elif event.type == pg.KEYDOWN:
|
elif event.type == pg.KEYDOWN:
|
||||||
if event.key == pg.K_t:
|
if event.key == pg.K_t:
|
||||||
print('Starting to clear the sector')
|
print('Starting to clear the sector')
|
||||||
while env.mine_count:
|
# while env.mine_count:
|
||||||
print('-' * 20)
|
print('-' * 20)
|
||||||
# path, actions = breadth_first_search(env.field, agent.x, agent.y, agent.direction)
|
|
||||||
goal = breadth_first_search(env.field, agent.x, agent.y, agent.direction, True)
|
goal = breadth_first_search(env.field, agent.x, agent.y, agent.direction, True)
|
||||||
path, actions = a_star(env.field, agent.x, agent.y, agent.direction, goal)
|
path, actions = a_star(env.field, agent.x, agent.y, agent.direction, goal)
|
||||||
|
|
||||||
|
@ -2,8 +2,10 @@ import queue
|
|||||||
from typing import List
|
from typing import List
|
||||||
|
|
||||||
from src.tile import Tile
|
from src.tile import Tile
|
||||||
|
from const import model, IMAGES
|
||||||
from search_algoritms.node import Node
|
from search_algoritms.node import Node
|
||||||
from .helpers import successor, get_path_actions
|
from .helpers import successor, get_path_actions
|
||||||
|
from machine_learning.neural_network.learning import prediction
|
||||||
|
|
||||||
|
|
||||||
def breadth_first_search(
|
def breadth_first_search(
|
||||||
@ -20,7 +22,8 @@ def breadth_first_search(
|
|||||||
while not node_queue.empty():
|
while not node_queue.empty():
|
||||||
node = node_queue.get()
|
node = node_queue.get()
|
||||||
|
|
||||||
if field[node.y][node.x].mine:
|
img_path = IMAGES[field[node.y][node.x].number].path
|
||||||
|
if field[node.y][node.x].occupied and prediction(img_path, model) == 'mine':
|
||||||
return get_path_actions(node) if not a_star else node.x, node.y
|
return get_path_actions(node) if not a_star else node.x, node.y
|
||||||
|
|
||||||
explored.append(node)
|
explored.append(node)
|
||||||
|
@ -3,8 +3,9 @@ from typing import List, Tuple
|
|||||||
import pygame as pg
|
import pygame as pg
|
||||||
|
|
||||||
from src.tile import Tile
|
from src.tile import Tile
|
||||||
from src.const import ROCK_INDEXES
|
from src.const import IMAGES, model
|
||||||
from src.search_algoritms.node import Node
|
from src.search_algoritms.node import Node
|
||||||
|
from machine_learning.neural_network.learning import prediction
|
||||||
|
|
||||||
|
|
||||||
def get_path_actions(node: Node):
|
def get_path_actions(node: Node):
|
||||||
@ -31,9 +32,18 @@ def successor(field: List[List[Tile]], x: int, y: int, direction: int):
|
|||||||
neighbours.append((x, y, (direction - 1) % 4, pg.K_a))
|
neighbours.append((x, y, (direction - 1) % 4, pg.K_a))
|
||||||
neighbours.append((x, y, (direction + 1) % 4, pg.K_d))
|
neighbours.append((x, y, (direction + 1) % 4, pg.K_d))
|
||||||
|
|
||||||
if coord == 'x' and 0 <= x + shift <= 9 and field[y][x + shift].number not in ROCK_INDEXES:
|
if coord == 'x' and 0 <= x + shift <= 9:
|
||||||
|
img_path = IMAGES[field[y][x + shift].number].path
|
||||||
|
impassable = True if field[y][x + shift].occupied and prediction(img_path, model) == 'rock' else False
|
||||||
|
|
||||||
|
if not impassable:
|
||||||
neighbours.append((x + shift, y, direction, pg.K_w))
|
neighbours.append((x + shift, y, direction, pg.K_w))
|
||||||
elif coord == 'y' and 0 <= y + shift <= 9 and field[y + shift][x].number not in ROCK_INDEXES:
|
|
||||||
|
elif coord == 'y' and 0 <= y + shift <= 9:
|
||||||
|
img_path = IMAGES[field[y + shift][x].number].path
|
||||||
|
impassable = True if field[y + shift][x].occupied and prediction(img_path, model) == 'rock' else False
|
||||||
|
|
||||||
|
if not impassable:
|
||||||
neighbours.append((x, y + shift, direction, pg.K_w))
|
neighbours.append((x, y + shift, direction, pg.K_w))
|
||||||
|
|
||||||
return neighbours
|
return neighbours
|
||||||
|
Loading…
Reference in New Issue
Block a user