neural_network #4
@ -3,7 +3,6 @@ import torch.nn as nn
|
||||
from torch.utils.data import DataLoader, random_split
|
||||
|
||||
from net import NeuralNetwork
|
||||
from database import create_training_data
|
||||
from Dataset import ImageDataset
|
||||
import os
|
||||
|
||||
@ -18,19 +17,13 @@ annonation_file = os.path.abspath('annotations.csv')
|
||||
|
||||
dataset = ImageDataset(annonation_file, img_dir)
|
||||
|
||||
print(len(dataset))
|
||||
trainset, testset = random_split(dataset, [1031, 200])
|
||||
|
||||
batch_size = 64
|
||||
|
||||
# Create data loaders.
|
||||
train_dataloader = DataLoader(trainset, batch_size=batch_size, shuffle=True)
|
||||
test_dataloader = DataLoader(testset, batch_size=batch_size, shuffle=True)
|
||||
|
||||
for X, y in test_dataloader:
|
||||
print("Shape of X [N, C, H, W]: ", X.shape)
|
||||
print("Shape of y: ", y.shape, y.dtype)
|
||||
break
|
||||
train_dataloader = DataLoader(trainset, shuffle=True)
|
||||
test_dataloader = DataLoader(testset, shuffle=True)
|
||||
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
print("Using {} device".format(device))
|
||||
@ -48,7 +41,7 @@ def train(dataloader, model, loss_fn, optimizer):
|
||||
X, y = X.to(device), y.to(device)
|
||||
|
||||
# Compute prediction error
|
||||
pred = model(X)
|
||||
pred = model(X.float())
|
||||
loss = loss_fn(pred, y)
|
||||
|
||||
# Backpropagation
|
||||
@ -68,7 +61,7 @@ def test(dataloader, model):
|
||||
with torch.no_grad():
|
||||
for X, y in dataloader:
|
||||
X, y = X.to(device), y.to(device)
|
||||
pred = model(X)
|
||||
pred = model(X.float())
|
||||
test_loss += loss_fn(pred, y).item()
|
||||
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
|
||||
test_loss /= size
|
||||
|
@ -6,7 +6,7 @@ class NeuralNetwork(nn.Module):
|
||||
super(NeuralNetwork, self).__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.linear_relu_stack = nn.Sequential(
|
||||
nn.Linear(28*28, 512),
|
||||
nn.Linear(28*28*3, 512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512, 512),
|
||||
nn.ReLU(),
|
||||
|
Loading…
Reference in New Issue
Block a user