integrating neural network with project
This commit is contained in:
parent
53daf29a98
commit
53fa8e0066
@ -35,14 +35,14 @@ VERTICAL_NUM_OF_FIELDS = 3
|
||||
HORIZONTAL_NUM_OF_FIELDS = 3
|
||||
```
|
||||
\
|
||||
#####4.1 Save generated map:
|
||||
####4.1 Save generated map:
|
||||
```bash
|
||||
python main.py --save-map
|
||||
```
|
||||
Map will be saved in maps directory.
|
||||
Generated filename: map-uuid
|
||||
|
||||
#####4.2 Load map
|
||||
####4.2 Load map
|
||||
```bash
|
||||
python main.py --load-map=name_of_map
|
||||
```
|
||||
|
@ -42,21 +42,21 @@ class App:
|
||||
def keys_pressed_handler(self):
|
||||
keys = pygame.key.get_pressed()
|
||||
|
||||
if keys[pygame.K_m]:
|
||||
self.__tractor.move()
|
||||
print(self.__tractor)
|
||||
|
||||
if keys[pygame.K_w]:
|
||||
self.__tractor.move()
|
||||
print(self.__tractor)
|
||||
|
||||
if keys[pygame.K_n]:
|
||||
self.__bot_is_running.set()
|
||||
self.__tractor.harvest_checked_fields_handler(self.__bot_is_running)
|
||||
|
||||
if keys[pygame.K_h]:
|
||||
self.__tractor.harvest()
|
||||
|
||||
if keys[pygame.K_v]:
|
||||
self.__tractor.sow()
|
||||
|
||||
if keys[pygame.K_n]:
|
||||
if keys[pygame.K_j]:
|
||||
self.__tractor.hydrate()
|
||||
|
||||
if keys[pygame.K_f]:
|
||||
|
@ -7,6 +7,9 @@ class BaseField:
|
||||
def __init__(self, img_path: str):
|
||||
self._img_path = img_path
|
||||
|
||||
def get_img_path(self):
|
||||
return self._img_path
|
||||
|
||||
def draw_field(self, screen: pygame.Surface, pos_x: int,
|
||||
pos_y: int, is_centered: bool = False,
|
||||
size: tuple = None, angle: float = 0.0) -> None:
|
||||
|
113
app/neural_network.py
Normal file
113
app/neural_network.py
Normal file
@ -0,0 +1,113 @@
|
||||
#!/usr/bin/python3
|
||||
import os
|
||||
|
||||
from tensorflow.keras.models import Sequential, save_model, load_model
|
||||
from tensorflow.keras.layers import Dense, Flatten, Conv2D
|
||||
from tensorflow.keras.losses import sparse_categorical_crossentropy
|
||||
from tensorflow.keras.optimizers import Adam
|
||||
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
||||
from tensorflow import keras as k
|
||||
import numpy as np
|
||||
|
||||
from app.base_field import BaseField
|
||||
from config import *
|
||||
|
||||
|
||||
class NeuralNetwork:
|
||||
def __init__(self):
|
||||
# Model config
|
||||
self.batch_size = 25
|
||||
self.img_width, self.img_height, self.img_num_channels = 25, 25, 3
|
||||
self.loss_function = sparse_categorical_crossentropy
|
||||
self.no_classes = 7
|
||||
self.no_epochs = 40
|
||||
self.optimizer = Adam()
|
||||
self.verbosity = 1
|
||||
|
||||
# Determine shape of the data
|
||||
self.input_shape = (self.img_width, self.img_height, self.img_num_channels)
|
||||
|
||||
# labels
|
||||
self.labels = ["cabbage", "carrot", "corn", "lettuce", "paprika", "potato", "tomato"]
|
||||
|
||||
def init_model(self):
|
||||
if not self.model_dir_is_empty():
|
||||
# Load the model
|
||||
self.model = load_model(
|
||||
os.path.join(RESOURCE_DIR, "saved_model"),
|
||||
custom_objects=None,
|
||||
compile=True
|
||||
)
|
||||
else:
|
||||
# Create the model
|
||||
self.model = Sequential()
|
||||
self.model.add(Conv2D(16, kernel_size=(5, 5), activation='relu', input_shape=self.input_shape))
|
||||
self.model.add(Conv2D(32, kernel_size=(5, 5), activation='relu'))
|
||||
self.model.add(Conv2D(64, kernel_size=(5, 5), activation='relu'))
|
||||
self.model.add(Conv2D(128, kernel_size=(5, 5), activation='relu'))
|
||||
self.model.add(Flatten())
|
||||
self.model.add(Dense(16, activation='relu'))
|
||||
self.model.add(Dense(self.no_classes, activation='softmax'))
|
||||
|
||||
# Display a model summary
|
||||
self.model.summary()
|
||||
|
||||
def load_images(self):
|
||||
# Create a generator
|
||||
self.train_datagen = ImageDataGenerator(
|
||||
rescale=1. / 255
|
||||
)
|
||||
self.train_datagen = self.train_datagen.flow_from_directory(
|
||||
TRAINING_SET_DIR,
|
||||
save_to_dir=ADAPTED_IMG_DIR,
|
||||
save_format='jpeg',
|
||||
batch_size=self.batch_size,
|
||||
target_size=(25, 25),
|
||||
class_mode='sparse')
|
||||
|
||||
def train(self):
|
||||
self.model.compile(loss=self.loss_function,
|
||||
optimizer=self.optimizer,
|
||||
metrics=['accuracy'])
|
||||
|
||||
# Start training
|
||||
self.model.fit(
|
||||
self.train_datagen,
|
||||
epochs=self.no_epochs,
|
||||
shuffle=False)
|
||||
|
||||
def predict(self, field: BaseField) -> str:
|
||||
print(field.get_img_path())
|
||||
# corn_img_path = os.path.join(RESOURCE_DIR,'corn.png')
|
||||
loaded_image = k.preprocessing.image.load_img(field.get_img_path(),
|
||||
target_size=(
|
||||
self.img_width, self.img_height, self.img_num_channels))
|
||||
|
||||
# convert to array and resample dividing by 255
|
||||
img_array = k.preprocessing.image.img_to_array(loaded_image) / 255.
|
||||
|
||||
# add sample dimension. the predictor is expecting (1, CHANNELS, IMG_WIDTH, IMG_HEIGHT)
|
||||
img_np_array = np.expand_dims(img_array, axis=0)
|
||||
# print(img_np_array)
|
||||
predictions = self.model.predict(img_np_array)
|
||||
prediction = np.argmax(predictions[0])
|
||||
|
||||
label = self.labels[prediction]
|
||||
print(f'Ground truth: {type(field).__name__} - Prediction: {label}')
|
||||
return label
|
||||
|
||||
def model_dir_is_empty(self) -> bool:
|
||||
if len(os.listdir(MODEL_DIR)) == 0:
|
||||
return True
|
||||
return False
|
||||
|
||||
def check(self, field: BaseField) -> str:
|
||||
self.load_images()
|
||||
self.init_model()
|
||||
prediction = self.predict(field)
|
||||
|
||||
# Saving model
|
||||
if not self.model_dir_is_empty():
|
||||
save_model(self.model, MODEL_DIR)
|
||||
|
||||
return prediction
|
@ -11,6 +11,7 @@ from typing import Union
|
||||
|
||||
from app.base_field import BaseField
|
||||
from app.board import Board
|
||||
from app.neural_network import NeuralNetwork
|
||||
from app.utils import get_class
|
||||
from app.fields import CROPS, PLANTS, Crops, Sand, Clay, Field
|
||||
from config import *
|
||||
@ -28,6 +29,7 @@ class Tractor(BaseField):
|
||||
self.__board = board
|
||||
self.__harvested_corps = []
|
||||
self.__fuel = 10
|
||||
self.__neural_network = None
|
||||
|
||||
def draw(self, screen: pygame.Surface) -> None:
|
||||
self.draw_field(screen, self.__pos_x + FIELD_SIZE / 2, self.__pos_y + FIELD_SIZE / 2,
|
||||
@ -203,6 +205,12 @@ class Tractor(BaseField):
|
||||
time.sleep(1)
|
||||
|
||||
# move
|
||||
self.move_or_rotate(movement)
|
||||
|
||||
time.sleep(TIME_OF_MOVING)
|
||||
is_running.clear()
|
||||
|
||||
def move_or_rotate(self, movement: str):
|
||||
print(f"Move {movement}")
|
||||
if movement == M_GO_FORWARD:
|
||||
self.move()
|
||||
@ -211,9 +219,6 @@ class Tractor(BaseField):
|
||||
elif movement == M_ROTATE_RIGHT:
|
||||
self.rotate_right()
|
||||
|
||||
time.sleep(TIME_OF_MOVING)
|
||||
is_running.clear()
|
||||
|
||||
@staticmethod
|
||||
def move_is_correct(x: int, y: int, direction: float) -> Union[(int, int), None]:
|
||||
pos_x = x * FIELD_SIZE
|
||||
@ -261,3 +266,26 @@ class Tractor(BaseField):
|
||||
obj = get_class("app.fields", choosen_type)
|
||||
board.get_fields()[x][y] = obj()
|
||||
return obj()
|
||||
|
||||
def harvest_checked_fields_handler(self, is_running: threading.Event):
|
||||
thread = threading.Thread(target=self.harvest_checked_fields, args=(is_running,), daemon=True)
|
||||
thread.start()
|
||||
|
||||
def harvest_checked_fields(self, is_running: threading.Event):
|
||||
moves = [M_GO_FORWARD, M_ROTATE_LEFT, M_ROTATE_RIGHT]
|
||||
distribution=[0.6,0.2,0.2]
|
||||
while True:
|
||||
field = self.get_field_from_board()
|
||||
|
||||
self.__neural_network = NeuralNetwork()
|
||||
prediction = self.__neural_network.check(field)
|
||||
|
||||
if prediction.capitalize() in CROPS:
|
||||
self.harvest()
|
||||
break
|
||||
chosen_move = random.choices(moves,distribution)
|
||||
|
||||
self.move_or_rotate(chosen_move[0])
|
||||
time.sleep(1)
|
||||
|
||||
is_running.clear()
|
||||
|
@ -12,7 +12,8 @@ __all__ = (
|
||||
'A_SOW', 'A_HARVEST', 'A_HYDRATE', 'A_FERTILIZE', 'A_DO_NOTHING',
|
||||
'D_NORTH', 'D_EAST', 'D_SOUTH', 'D_WEST',
|
||||
'VALUE_OF_CROPS', 'VALUE_OF_PLANT', 'VALUE_OF_SAND', 'VALUE_OF_CLAY',
|
||||
'MAP_FILE_NAME', 'JSON','SAVE_MAP', 'LOAD_MAP'
|
||||
'MAP_FILE_NAME', 'JSON', 'SAVE_MAP', 'LOAD_MAP',
|
||||
'TRAINING_SET_DIR', 'TEST_SET_DIR', 'ADAPTED_IMG_DIR', 'MODEL_DIR'
|
||||
)
|
||||
|
||||
# Board settings:
|
||||
@ -26,11 +27,15 @@ HEIGHT = VERTICAL_NUM_OF_FIELDS * FIELD_SIZE
|
||||
FPS = 10
|
||||
CAPTION = 'Tractor'
|
||||
|
||||
# Path
|
||||
# Paths
|
||||
BASE_DIR = os.path.dirname(__file__)
|
||||
RESOURCE_DIR = os.path.join(BASE_DIR, 'resources')
|
||||
MAP_DIR = os.path.join(BASE_DIR, 'maps')
|
||||
MAP_FILE_NAME = 'map'
|
||||
TRAINING_SET_DIR = os.path.join(RESOURCE_DIR, 'smaller_train')
|
||||
TEST_SET_DIR = os.path.join(RESOURCE_DIR, 'smaller_test')
|
||||
ADAPTED_IMG_DIR = os.path.join(RESOURCE_DIR, "adapted-images")
|
||||
MODEL_DIR = os.path.join(RESOURCE_DIR, 'saved_model')
|
||||
|
||||
# Picture format
|
||||
PNG = "png"
|
||||
|
BIN
requirements.txt
BIN
requirements.txt
Binary file not shown.
@ -9,5 +9,5 @@
|
||||
“root.layer-4"_tf_keras_layer*é{"name": "flatten", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Flatten", "config": {"name": "flatten", "trainable": true, "dtype": "float32", "data_format": "channels_last"}, "shared_object_id": 13, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 1, "axes": {}}, "shared_object_id": 26}}2
|
||||
Êroot.layer_with_weights-4"_tf_keras_layer*“{"name": "dense", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense", "trainable": true, "dtype": "float32", "units": 16, "activation": "relu", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 14}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 15}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 16, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 10368}}, "shared_object_id": 27}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 10368]}}2
|
||||
Êroot.layer_with_weights-5"_tf_keras_layer*“{"name": "dense_1", "trainable": true, "expects_training_arg": false, "dtype": "float32", "batch_input_shape": null, "stateful": false, "must_restore_from_config": false, "class_name": "Dense", "config": {"name": "dense_1", "trainable": true, "dtype": "float32", "units": 7, "activation": "softmax", "use_bias": true, "kernel_initializer": {"class_name": "GlorotUniform", "config": {"seed": null}, "shared_object_id": 17}, "bias_initializer": {"class_name": "Zeros", "config": {}, "shared_object_id": 18}, "kernel_regularizer": null, "bias_regularizer": null, "activity_regularizer": null, "kernel_constraint": null, "bias_constraint": null}, "shared_object_id": 19, "input_spec": {"class_name": "InputSpec", "config": {"dtype": null, "shape": null, "ndim": null, "max_ndim": null, "min_ndim": 2, "axes": {"-1": 16}}, "shared_object_id": 28}, "build_input_shape": {"class_name": "TensorShape", "items": [null, 16]}}2
|
||||
¹croot.keras_api.metrics.0"_tf_keras_metric*‚{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 29}2
|
||||
ódroot.keras_api.metrics.1"_tf_keras_metric*¼{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 22}2
|
||||
¹froot.keras_api.metrics.0"_tf_keras_metric*‚{"class_name": "Mean", "name": "loss", "dtype": "float32", "config": {"name": "loss", "dtype": "float32"}, "shared_object_id": 29}2
|
||||
ógroot.keras_api.metrics.1"_tf_keras_metric*¼{"class_name": "MeanMetricWrapper", "name": "accuracy", "dtype": "float32", "config": {"name": "accuracy", "dtype": "float32", "fn": "sparse_categorical_accuracy"}, "shared_object_id": 22}2
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading…
Reference in New Issue
Block a user